Next Article in Journal
Matching Number, Independence Number, and Covering Vertex Number of Γ(Zn)
Next Article in Special Issue
A Further Extension for Ramanujan’s Beta Integral and Applications
Previous Article in Journal
Global Optimization for Quasi-Noncyclic Relatively Nonexpansive Mappings with Application to Analytic Complex Functions
Previous Article in Special Issue
Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables

by
Kottakkaran Sooppy Nisar
Department of Mathematics, College of Arts and Science-Wadi Aldawaser, Prince Sattam bin Abdulaziz University, 11991 Al-Kharj, Saudi Arabia
Mathematics 2019, 7(1), 48; https://doi.org/10.3390/math7010048
Submission received: 12 December 2018 / Revised: 1 January 2019 / Accepted: 3 January 2019 / Published: 6 January 2019
(This article belongs to the Special Issue Special Functions and Applications)

Abstract

:
The main aim of this paper is to provide a new generalization of Hurwitz-Lerch Zeta function of two variables. We also investigate several interesting properties such as integral representations, summation formula, and a connection with the generalized hypergeometric function. To strengthen the main results we also consider some important special cases.

1. Introduction

The generalized hypergeometric function F ( ) [1] defined by
F β 1 , , β p ; δ 1 , , δ q ; z = p F q β 1 , , β p ; δ 1 , , δ q ; z = n = 0 i = 1 p β i n z n j = 1 q β j n n ! ,
where p , q Z + ; b j 0 , 1 , 2 , .
The Appell hypergeometric function F 1 of two variables [2] is defined by
F 1 [ a , b , b ; c ; z , t ] = k , l = 0 ( a ) k + l ( b ) k ( b ) l ( c ) k + l z k k ! t l l ! , = k = 0 ( a ) k ( b ) k ( c ) k 2 F 1 a + k , b ; c + k ; t z k k ! , m a x ( z ) , ( t ) 1 and ( a ) > 0 .
The confluent forms of Humbert functions are [2]:
Φ 1 [ a , b ; c ; z , t ] = k , l = 0 ( a ) k + l ( b ) k ( c ) k + l z k k ! t l l ! , z < 1 , t < ,
Φ 2 [ b , b ; c ; z , t ] = k , l = 0 ( b ) k ( b ) l ( c ) k + l z k k ! t l l ! , z < , t < ,
and
Φ 3 [ b ; c ; z , t ] = k , l = 0 ( b ) k ( c ) k + l z k k ! t l l ! , z < , t < .
The Appell’s type generalized functions M i by considering product of two 3 F 2 functions is given in [3]. From these expansions, we recall one of the generalized Appell’s type functions of two variables M 4 and is defined by
M 4 μ , η , η , δ , δ ; ν , ξ , ξ ; x , y = k = 0 l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l x k k ! y l l ! .
If we set μ = ν , δ = ξ , δ = ξ in (6) then
M 4 [ μ , η , η , δ , δ ; μ , δ , δ ; x , y ] = 1 x η 1 y η .
The Hurwitz-Lerch Zeta function Φ ( z , s , a ) is defined by (see [4,5]):
Φ ( z , s , a ) = k = 0 z k ( k + a ) s ,
a C Z 0 ; s C when z < 1 ; ( s ) > 1 when z = 1 .
For more details about the properties and particular cases found in [1,4,5]. Various type of generalizations, extensions, and properties of the Hurwitz-Lerch Zeta function can be found in [6,7,8,9,10,11,12,13].
Recently, Pathan and Daman [14] give another generalization of the form
Φ α , β ; γ , λ , μ ; ν z , t , s , a : = k , l = 0 ( α ) k ( β ) k ( λ ) l ( μ ) l ( γ ) k ( ν ) l k ! l ! z k t l ( k + l + a ) s , γ , ν , a 0 , 1 , 2 , , , s C ; s + γ + ν α β μ λ > 0 when z = 1 and t = 1 .
Very recently, Choi and Parmar [15] introduced two variable generalization by
Φ μ , η , η ; ν z , t , s , a : = k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( ν ) k + l k ! l ! z k t l ( k + l + a ) s , μ , η , η C ; a , ν C Z 0 ; s , z , t C when z < 1 and t < 1 ; and s + ν μ η η > 0 when z = 1 and t = 1 .
In this paper, we further extended the Hurwitz-Lerch Zeta function of two variables and is defined by
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a : = k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l k ! l ! z k t l ( k + l + a ) s , μ , η , η , δ , δ C ; a , ν , ξ , ξ C Z 0 ; s , z , t C when z < 1 and t < 1 ; and s + ν + ξ + ξ μ η η δ δ > 0 when z = 1 and t = 1 .
Special cases:
Case 1. If δ = ξ , δ = ξ , then (11) reduces to (3) of [15] which is given in (10).
Case 2. If μ = ν and δ = ξ , δ = ξ in (11), then we get the generalized Hurwitz-Lerch Zeta function of [14]:
Φ η , η z , t , s , a : = k , l = 0 ( η ) k ( η ) l k ! l ! z k t l ( k + l + a ) s , η , η C ; a C Z 0 ; s C when z < 1 and t < 1 ; and s η η > 0 when z = 1 and t = 1 .
The limiting cases of (11) are as follows:
Case 3. If η then we have
Φ μ , η , δ , δ ; ν , ξ , ξ z , t , s , a : = lim η Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t / η , s , a = k , l = 0 ( μ ) k + l ( η ) k ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l k ! l ! z k t l ( k + l + a ) s , μ , η , δ , δ C ; a , ν , ξ , ξ C Z 0 ; s , z , t C when z < 1 and t < 1 ; and s + ν + ξ + ξ μ η δ δ > 0 when z = 1 and t = 1 .
Case 4. If μ then we have
Φ η , η , δ , δ ; ν , ξ , ξ z , t , s , a : = lim μ Φ μ , η , η , δ , δ ; ν , ξ , ξ z / μ , t / μ , s , a = k , l = 0 ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l k ! l ! z k t l ( k + l + a ) s , η , η , δ , δ C ; a , ν , ξ , ξ C Z 0 ; s , z , t C when z < 1 and t < 1 ; and s + ν + ξ + ξ η δ δ > 0 when z = 1 and t = 1 .
Case 5. If m i n ( μ , η ) then we have
Φ η , δ , δ ; ν , ξ , ξ z , t , s , a : = lim m i n ( μ , η ) Φ μ , η , η , δ , δ ; ν , ξ , ξ z μ , t ( μ η ) , s , a = k , l = 0 ( η ) k ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l k ! l ! z k t l ( k + l + a ) s , η , δ , δ C ; a , ν , ξ , ξ C Z 0 ; s , z , t C when z < 1 and t < 1 ; and s + ν + ξ + ξ η δ δ > 0 when z = 1 and t = 1 .

2. Integral Representations

Theorem 1.
The following integral representation of (11) holds true:
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x M 4 μ , η , η , δ , δ ; ν , ξ , ξ ; z e x , t e x d x , min ( s ) , ( a ) > 0 when z 1 ( z 1 ) , t 1 ( t 1 ) , ( s ) > 1 , when z = 1 , t = 1 .
Proof. 
Using the following Eulerian integral
1 k + l + a s : = 1 Γ ( s ) 0 t s 1 e ( k + l + a ) t d t min ( s ) , ( a ) > 0 , k , l N 0
in (11), we get
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l z k t l k ! l ! 1 Γ ( s ) 0 x s 1 e ( k + l + a ) x d x .
Interchanging the order of integration and summation, which is verified by uniform convergence of the involved series under the given conditions, we have
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l z k t l k ! l ! e t k e t l d x .
In view of (6), we arrived the desired result. □
Similarly, if we use (17) in the limiting cases (13), (14) and (15) then we obtain the following corollaries:
Corollary 1.
The following integral representations for Φ μ , η , δ , δ ; ν , ξ , ξ z , t , s , a , Φ η , η , δ , δ ; ν , ξ , ξ z , t , s , a and Φ η , δ , δ ; ν , ξ , ξ z , t , s , a in (13), (14) and (15) holds true when δ = ξ , δ = ξ :
Φ μ , η ; ν z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x Φ 1 μ , η ; ν ; z e x , t e x d x ,
which is (14) of [15].
Φ η , η ; ν z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x Φ 2 η , η ; ν ; z e x , t e x d x ,
which is (15) of [15] and
Φ η ; ν z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x Φ 3 η ; ν ; z e x , t e x d x .
min ( s ) , ( a ) > 0 when z 1 ( z 1 ) , t 1 ( t 1 ) , ( s ) > 1 , when z = 1 , t = 1 , which is (16) of [15].
Corollary 2.
In view of (7), we have
Φ μ , η , η ; μ z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x 1 z e x η 1 t e x η d x ,
min ( s ) > 0 , ( a ) > 0 when z 1 ( z 1 ) , t 1 ( t 1 ) , ( s ) > 1 , when z = 1 , t = 1 .
Remark 1.
If we take t = 0 in (22), then it gives (19) of [15] and by setting t = 0 , η = 1 then (22) reduces to (20) of [15]
Theorem 2.
Each of the following integrals for Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a holds true
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = Γ ( ν ) Γ ( μ ) Γ ( ν μ ) 0 y μ 1 ( 1 + y ) ν Φ η , η , ξ , δ ; δ , ξ z y 1 + y , t y 1 + y , s , a ,
and
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = Γ ( ν ) Γ ( s ) Γ ( μ ) Γ ( ν μ ) 0 0 x s 1 e a x y μ 1 ( 1 + y ) ν × k = 0 ( η ) k ( δ ) k k ! ( ξ ) k z y e x 1 + y k l = 0 ( η ) l ( δ ) k l ! ( ξ ) k t y e x 1 + y l d x d y .
Proof. 
Setting a = μ + k + l , b = ν + k + l in the Eulerian beta function formula,
B a , b a = Γ ( a ) Γ ( b a ) Γ ( b ) = 0 y a 1 ( 1 + y ) b d y , ( b ) > ( a ) > 0 ,
gives
Γ ( μ + k + l ) Γ ( ν μ ) Γ ( ν + k + l ) = 0 y μ + k + l 1 ( 1 + y ) ν + k + l d y ,
( μ ) k + l Γ ( μ ) Γ ( ν μ ) ( ν ) k + l Γ ( ν ) = 0 y μ + k + l 1 ( 1 + y ) ν + k + l d y , ( ν ) > ( μ ) > 0 , k , l N .
( μ ) k + l ( ν ) k + l = Γ ( ν ) Γ ( μ ) Γ ( ν μ ) 0 y μ + k + l 1 ( 1 + y ) ν + k + l d y .
Now substituting (27) in (11), we get
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = k = 0 Γ ( ν ) Γ ( μ ) Γ ( ν μ ) 0 y μ + k + l 1 ( 1 + y ) ν + k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ξ ) k ( ξ ) l k ! l ! z k t l ( k + l + a ) s d y
interchanging integration and summation gives
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = Γ ( ν ) Γ ( μ ) Γ ( ν μ ) 0 y μ 1 ( 1 + y ) ν k = 0 ( η ) k ( η ) l ( δ ) k ( δ ) l ( ξ ) k ( ξ ) l k ! l ! z y 1 + y k t y 1 + y l 1 k + l + a s d y .
In view of (11) and (9) we arrived the desired result.
Now, we prove the second integral. From (18), Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a can be written as
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l z e x k k ! t e x l l ! d x ,
Now using (27), we get
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = 1 Γ ( s ) 0 x s 1 e a x k , l = 0 Γ ( ν ) Γ ( μ ) Γ ( ν μ ) 0 y μ + k + l 1 ( 1 + y ) ν + k + l d y × ( η ) k ( η ) l ( δ ) k ( δ ) l ( ξ ) k ( ξ ) l z e x k k ! t e x l l ! d x , = Γ ( ν ) Γ ( s ) Γ ( μ ) Γ ( ν μ ) 0 0 x s 1 e a x y μ 1 ( 1 + y ) ν × k = 0 ( η ) k ( δ ) k ( ξ ) k k ! z y e x 1 + y k l = 0 ( η ) l ( δ ) l ( ξ ) l l ! t y e x 1 + y l d x d y .
 □
Corollary 3.
If δ = δ = 1 and ξ = ξ = 1 , then we get the result (22) of [15] as
Φ μ , η , η ; ν z , t , s , a = Γ ( ν ) Γ ( s ) Γ ( μ ) Γ ( ν μ ) × 0 0 x s 1 e a x y μ 1 ( 1 + y ) ν 1 z y e x 1 + y η 1 t y e x 1 + y η d x d y , ( ν ) > ( μ ) > 0 ; min ( s ) , ( a ) > 0 .
Theorem 3.
The following summation formula hold true.
r = 0 ( s ) r r ! Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s + r , a x r = Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a x , x < a ; s 1 .
Proof. 
Using (11), we have
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a x = k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l z k t l k ! l ! ( k + l + a x ) s , = k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l z k t l k ! l ! ( k + l + a ) s 1 x k + l + a s , using binomial series , we get = r = 0 ( s ) r s ! k , l = 0 ( μ ) k + l ( η ) k ( η ) l ( δ ) k ( δ ) l ( ν ) k + l ( ξ ) k ( ξ ) l z k t l k ! l ! ( k + l + a ) s + r x r .
In view of definition (11), we reach the required result. □

3. A Connection with Generalized Hypergeometric Function

In this section, we establish the connection between (11) and generalized hypergeometric function.
Theorem 4.
For a 1 , 2 , and z 0 , the following explicit series representation holds true
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = k = 0 ( μ ) k ( η ) k ( δ ) k z k ( ν ) k ( ξ ) k ( a + k ) s k ! × F η , δ , 1 ξ k , k ; 1 η k , 1 δ k , ξ ; t z ,
where F ( ) is the generalized hypergeometric function defined in (1).
Proof. 
Using (11) and the identity ([16] page 56, Equation (1))
k = 0 l = 0 A l , k = k = 0 l = 0 k A l , k l ,
which implies that
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = k = 0 l = 0 k ( μ ) k ( η ) k l ( η ) l ( δ ) k l ( δ ) l ( ν ) k ( ξ ) k l ( ξ ) l ( k l ) ! l ! z k l t l ( k + a ) s .
Now,
k l ! = ( 1 ) l k ! ( k ) l , 0 l k η k l = ( 1 ) l ( η ) k ( 1 η k ) l , 0 l k ,
we get,
Φ μ , η , η , δ , δ ; ν , ξ , ξ z , t , s , a = k = 0 l = 0 k ( μ ) k ( η ) k ( η ) l ( δ ) k ( δ ) l ( 1 ξ k ) l ( k ) l z k l t l ( ν ) k ( 1 η k ) l ( 1 δ k ) l ( ξ ) k ( ξ ) l ( k ) ! l ! 1 ( k + a ) s .
Lastly, summing the l-series, we get the required result. □
Corollary 4.
If we set δ = ξ in Theorem 4, then we get (28) of [14] as
Φ μ , η , η , ξ , δ ; ν , ξ , ξ z , t , s , a = k = 0 ( μ ) k ( η ) k z k ( ν ) k ( k + a ) s k ! F η , δ , k , 1 ξ k ; ξ , 1 η k , 1 ξ k ; t z .
Corollary 5.
If we set ν = η , δ = ξ and δ = ξ in Theorem 4, then we get (29) of [14] as
Φ μ , η , η , ξ , ξ ; η , ξ , ξ z , t , s , a = k = 0 ( μ ) k z k ( a + k ) s k ! F η , k ; 1 η k ; t z .

4. Concluding Remarks

An extension of a generalized Hurwitz-Lerch Zeta function is defined and some of its properties are studied in this paper. An integral representation is established and a relation with Appell’s type function is given. Finally, a connection with the hypergeometric function is also given. The results derived here are more general in nature by comparing the results of the papers [14,15] which help to derive some interesting special cases and are mentioned in Remark 1 and Corollaries 1–5.

Acknowledgments

The author is very grateful to the reviewers for their valuable comments and suggestions to improve this paper in the current form.

Conflicts of Interest

The author declare no conflict of interest.

References

  1. Erdelyi, A. Higher Transcendental Functions; McGraw Hill Book Co.: New York, NY, USA, 1953. [Google Scholar]
  2. Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
  3. Khan, M.A.; Abukhammash, G.S. On a generalizations of Appell’s functions of two variables. Pro Math. 2002, 31, 61–83. [Google Scholar]
  4. Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer, Acedemic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
  5. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
  6. Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall, (CRC Press Company): Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
  7. Choi, J.; Jang, D.S.; Srivastava, H.M. A generalization of the Hurwitz-Lerch Zeta function. Integral Transf. Spec. Funct. 2008, 19, 65–79. [Google Scholar]
  8. Jankov, D.; Pogany, T.K.; Saxena, R.K. An extended general Hurwitz-Lerch Zeta function as a Mathieu (a, λ)-series. Appl. Math. Lett. 2011, 24, 1473–1476. [Google Scholar] [CrossRef]
  9. Lin, S.D.; Srivastava, H.M. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
  10. Srivastava, H.M. A new family of the λ-generalized Hurwitz-Lerch Zeta functions with applications. Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [Google Scholar] [CrossRef]
  11. Srivastava, H.M.; Jankov, D.; Pogany, T.K.; Saxena, R.K. Two-sided inequalities for the extended Hurwitz-Lerch Zeta function. Comput. Math. Appl. 2011, 62, 516–522. [Google Scholar] [CrossRef]
  12. Srivastava, H.M.; Luo, M.-J.; Raina, R.K. New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications. Turkish J. Anal. Number Theory 2013, 1, 26–35. [Google Scholar] [CrossRef]
  13. Srivastava, H.M.; Saxena, R.K.; Pogany, T.K.; Saxena, R. Integral and computational representations of the extended Hurwitz-Lerch Zeta function. Integral Transf. Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
  14. Pathan, M.A.; Daman, O. Further generalization of Hurwitz Zeta function. Math. Sci. Res. J. 2012, 16, 251–259. [Google Scholar]
  15. Choi, J.; Parmar, R. An extension of the generalized Hurwitz-Lerch Zeta function of two variable. Filomat 2017, 31, 91–96. [Google Scholar] [CrossRef]
  16. Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]

Share and Cite

MDPI and ACS Style

Sooppy Nisar, K. Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables. Mathematics 2019, 7, 48. https://doi.org/10.3390/math7010048

AMA Style

Sooppy Nisar K. Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables. Mathematics. 2019; 7(1):48. https://doi.org/10.3390/math7010048

Chicago/Turabian Style

Sooppy Nisar, Kottakkaran. 2019. "Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables" Mathematics 7, no. 1: 48. https://doi.org/10.3390/math7010048

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop