From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity
Abstract
:1. Introduction
2. Exponential Non-Standard Lagrangians in Differential Geometry and General Relativity: Some Basic Consequences
2.1. New Spacetime Coordinates with a Metric Signature Change (NSTC + MC)
2.2. A Discretized Spacetime Metric (DSTM)
Details | Standard General Relativity | Discrete General Relativity from ENSL |
---|---|---|
Geodesic equation (GE) | ||
Parameterization (Para) | ||
GE after Para | ||
Condition for | real action | complexified action |
Discrete solutions | Do not exist | Exist in two different forms (Table 2) |
Details | New Spacetime Coordinates with a Metric Signature Change | A Discretized Spacetime Metric |
---|---|---|
EFE | ||
Scalar curvature | ||
Discrete gravity |
Details | New Spacetime Coordinates Free from a Metric Signature Change | A Discretized Spacetime Metric |
---|---|---|
EFE | ||
Scalar curvature | ||
Discrete gravity |
3. Some Applications of Discrete Gravity, Discrete Metric and New Spacetime Coordinates
3.1. The Linearized Theory
3.2. The Gravitational Bohr Atom
3.3. Black Hole Hawking's Radiation
4. Conclusions
Acknowledgment
Conflicts of Interest
References
- Carinena, J.G.; Ranada, M.F.; Santander, M. Lagrangian formalism for nonlinear second-order Riccati Systems: One-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 2005, 46, 062703–062721. [Google Scholar] [CrossRef]
- Chandrasekar, V.K.; Pandey, S.N.; Senthilvelan, M.; Lakshmanan, M. Simple and unified approach to identify integrable nonlinear oscillators and systems. J. Math. Phys. 2006, 47, 023508–023545. [Google Scholar] [CrossRef]
- Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. Phys. Rev. E 2005, 72, 066203–066211. [Google Scholar] [CrossRef]
- Musielak, Z.E. Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 2008, 41, 055205–055222. [Google Scholar] [CrossRef]
- Musielak, Z.E. General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 2009, 42, 2645–2652. [Google Scholar] [CrossRef]
- Chandrasekar, V.K.; Senthilvelan, M.; Lakshmanan, M. A Nonlinear oscillator with unusual dynamical properties. In Proceedings of the Third National Systems and Dynamics, Sydney, Australia, 6–8 February 2006; pp. 1–4.
- El-Nabulsi, R.A. Non-standard fractional Lagrangians. Nonlinear Dyn. 2013, 74, 381–394. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent. Comp. Appl. Math. 2014, 33, 163–179. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-standard non-local-in-time Lagrangian in classical mechanics. Qual. Theory Dyn. Syst. 2014, 13, 149–160. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlinear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. 2013, 13, 273–291. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-standard Lagrangians in rotational dynamics and the modified Navier-Stokes equation. Nonlinear Dyn. 2015, 79, 2055–2068. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 2015, 43, 120–127. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Modified plasma-fluid equations from non-standard Lagrangians with applications to nuclear fusion. Canad. J. Phys. 2015, 93, 55–67. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. A generalized nonlinear oscillator from non-standard degenerate Lagrangians and its consequent Hamiltonian formalism. Proc. Nat. Acad. Sci. Ind. A Phys. Sci. 2014, 84, 563–569. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Rezazadeh, H. Non-standard Lagrangians with differential operators. J. Nonlinear Anal. Optim. 2014, 5, 21–35. [Google Scholar]
- El-Nabulsi, R.A. Non-standard Lagrangians with higher-order derivatives and the Hamiltonian formalism. Proc. Nat. Acad. Sci. Ind. A Phys. Sci. 2015, 85, 247–252. [Google Scholar] [CrossRef]
- Saha, A.; Talukdar, B. On the non-standard Lagrangian equations. Available online: http://arxiv.org/ftp/arxiv/papers/1301/1301.2667.pdf (accessed on 12 January 2013).
- Saha, A.; Talukdar, B. Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 2013, 73, 299–309. [Google Scholar] [CrossRef]
- Taverna, G.S.; Torres, D.F.M. Generalized fractional operators for non-standard Lagrangians. Math. Meth. Appl. Sci. 2015, 39, 1808–1812. [Google Scholar] [CrossRef]
- Lukkassen, D. Reiterated homogenization of non-standard Lagrangians. C. R. Acad. Sci. Paris 2001, 332, 994–1004. [Google Scholar] [CrossRef]
- Fan, X. Regularity of nonstandard Lagrangians f (x,ξ). Nonlinear Anal. Theo. Meth. Appl. 1996, 27, 669–678. [Google Scholar] [CrossRef]
- Shmarev, S.I.; Vazquez, J.L. The regularity of solutions of reaction-diffusion equations via Lagrangian coordinates. Nonlinear Diff. Equa. Appl. 1996, 3, 465–497. [Google Scholar] [CrossRef]
- Alekseev, A.I.; Arbuzov, B.A. Classical Yang-Mills field theory with nonstandard Lagrangian. Theor. Math. Phys. 1984, 59, 372–378. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Electrodynamics of relativistic particles through non-standard Lagrangians. J. Atom. Mol. Sci. 2014, 5, 268–278. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Indian J. Phys. 2013, 87, 465–470. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Quantum field theory from an exponential action functional. Indian J. Phys. 2013, 87, 379–383. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Generalizations of the Klein-Gordon and the Dirac Equations from non-standard Lagrangians. Proc. Nat. Acad. Sci. India Sec. A Phys. Sci. 2013, 83, 383–387. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonstandard fractional exponential Lagrangians, fractional geodesic equation, complex general relativity, and discrete gravity. Can. J. Phys. 2013, 91, 618–622. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-standard Lagrangians cosmology. J. Theor. Appl. Phys. 2013, 7, 1–12. [Google Scholar] [CrossRef]
- Garousi, M.R.; Sami, N.; Tsujikawa, S. Constraints on Dirac-Born-Infeld type dark energy models from varying alpha. Phys. Rev. D 2005, 71, 083005–0830016. [Google Scholar] [CrossRef]
- Copeland, E.J.; Garousi, M.R.; Sami, M.; Tsujikawa, S. What is needed of a tachyon if it is to be the dark energy? Phys. Rev. D 2005, 71, 043003–0430014. [Google Scholar] [CrossRef]
- Dimitrijevic, D.D.; Milosevic, M. About non-standard Lagrangians in cosmology. AIP Conf. Proc. 2012, 1472, 41–46. [Google Scholar]
- Alekseev, A.I.; Vshivtsev, A.S.; Tatarintsev, A.V. Classical non-Abelian solutions for non-standard Lagrangians. Theor. Math. Phys. 1988, 77, 1189–1197. [Google Scholar] [CrossRef]
- Schutz, B. A First Course in General Relativity, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Eberly, D. Computing Geodesics on a Riemannian Manifold, Geometric Tools. Available online: http://www.geometrictools.com/Documentation/RiemannianGeodesics.pdf (accessed on 11 August 2015).
- Rodulfo, E.T.; Bornilla, E.B. Geodesic equation for an acceleration-dependent metric. Manila J. Sci. 2011, 6, 19–29. [Google Scholar]
- Anderson, J.D.; Laing, P.A.; Lau, E.L.; Liu, A.S.; Nieto, M.M.; Turyshev, S.G. Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Phys. Rev. Lett. 1998, 81, 2858–2862. [Google Scholar] [CrossRef]
- Ghosh, S. Quantum gravity effects in geodesic motion and predictions of equivalence principle violation. Class. Quantum Gravity 2014, 31, 025025–025035. [Google Scholar] [CrossRef]
- Bondi, H. Negative mass in general relativity. Rev. Mod. Phys. 1957, 29, 423–428. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics-Implications for galaxies. Astrophys. J. 1983, 270, 371–389. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics-Implications for galaxy systems. Astrophys. J. 1983, 270, 384–389. [Google Scholar] [CrossRef]
- Lammerzahel, C.; Preuss, O.; Dittus, H. Is the physics within the solar system really understood? Lasers, Clocks and Drag-Free Control. Astrophys. Space Sci. Libr. 2008, 349, 75–101. [Google Scholar]
- Speliotopoulos, A.D. Dark energy and extending the geodesic equations of motion: Its construction and experimental constraints. Gen. Relativ. Gravity 2010, 42, 1537–1555. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Gravitons in fractional action cosmology. Int. J. Theor. Phys. 2012, 51, 3978–2992. [Google Scholar] [CrossRef]
- Jamil, M.; Rashid, M.A.; Momeni, D.; Razina, O.; Esmakhanova, K. Fractional action cosmology with power-law weight function. J. Phys. Conf. Ser. 2012, 354, 012008–0122020. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Oscillating flat FRW dark energy dominated cosmology from periodic functional approach. Commun. Theor. Phys. 2010, 54, 16–20. [Google Scholar]
- Sidharth, B.G. Complexified spacetime. Found. Phys. Lett. 2003, 16, 91–97. [Google Scholar] [CrossRef]
- Tomimatsu, A. Classical pseudoparticle solutions in general relativity. Prog. Theor. Phys. 1978, 59, 2096–2106. [Google Scholar] [CrossRef]
- Esposito, G. From spinor geometry to complex general relativity. Int. J. Geom. Meth. Mod. Phys. 2005, 2, 657–731. [Google Scholar] [CrossRef]
- Flaherty, E.J. Complex Variables in Relativity. In General Relativity and Gravitation, One Hundred Years after the Birth of Albert Einstein; Held, A., Ed.; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Kunstatter, G.; Yates, R. The geometrical structure of a complexified theory of gravitation. J. Phys. A: Math. Gen. 1981, 14, 847–854. [Google Scholar] [CrossRef]
- Iliev, B.Z. On metric-connection compatibility and the signature change of space-time. Phys. Scrip. 2002, 66, 401–409. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Norton, J.D. General covariance and the foundations of general relativity: Eight decades of dispute. Rep. Prog. Phys. 1933, 56, 791–858. [Google Scholar] [CrossRef]
- Vassallo, A. General Covariance, Diffeomorphism Invariance, and Background Independence in 5 Dimensions. Available online: http://arxiv.org/abs/1410.1043 (accessed on 11 August 2015).
- Pirogov, Y.F. General covariance violation and the gravitational dark matter. I. Vector graviton. Phys. At. Nucl. 2006, 69, 1338–1344. [Google Scholar] [CrossRef]
- Pirogov, Y.F. General covariance violation and the gravitational dark matter. II. Vector graviton. Phys. At. Nucl. 2006, 69, 1622–1627. [Google Scholar] [CrossRef]
- Anber, M.M.; Aydemir, U.; Donoghue, J.F. Breaking diffeomorphism invariance and tests for the emergence of gravity. Phys. Rev. D 2010, 81, 084059–084072. [Google Scholar] [CrossRef]
- Moffat, J.W. Lorentz violation of quantum gravity. Class. Quantum Gravity. 2010, 27, 135016–135020. [Google Scholar] [CrossRef]
- Rylov, Y.A. General relativity extended to non-Riemannian space-time geometry. Electron. J. Theor. Phys. 2014, 31, 177–202. [Google Scholar]
- Hod, S. Quantum-gravity fluctuations and the black-hole temperature. Eur. Phys. J. C (Lett.) 2015, 75, 233–235. [Google Scholar] [CrossRef]
- Dadhich, N.; Maartens, R.; Papadopoulos, P.; Rezania, V. Black holes on the brane. Phys. Lett. B 2000, 487, 1–6. [Google Scholar] [CrossRef]
- Cheng, Q. De Sitter space. In Encyclopedia of Mathematics; Hazewinkel, M., Ed.; Springer: Berlin, Germany, 2001. [Google Scholar]
- Dvali, G.; Gomez, C. Quantum compositeness of gravity: Black-holes, AdS and gravity. J. Cosmol. Astropart. Phys. 2014, 1, 23–68. [Google Scholar] [CrossRef]
- Rovelli, C.; Vidotto, F. Compact phase space, cosmological constant, discrete time. Phys. Rev. D 2015, 91, 084037–084043. [Google Scholar] [CrossRef]
- Prokopec, T. Lectures Notes on Cosmology. Available online: http://www.staff.science.uu.nl/~proko101/1gr.pdf (accessed on 11 August 2015).
- Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris 2007, 345, 643–646. [Google Scholar] [CrossRef]
- Ollivier, Y. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 2009, 256, 810–864. [Google Scholar] [CrossRef]
- Schutz, B.F. Gravitational Waves Notes for Lectures at the Azores School on Observational Cosmology September 2011; Albert Einstein Institute (AEI): Potsdam, Germany, 2011. [Google Scholar]
- Ciubotariu, C. Absorption of gravitational waves. Phys. Lett. A 1991, 158, 27–30. [Google Scholar] [CrossRef]
- Argyris, J.; Ciubotariu, C. Massive gravitons in general relativity. Aust. J. Phys. 1997, 50, 879–891. [Google Scholar]
- Gazeau, J.P.; Novello, M. The nature of and the mass of the graviton: A critical view. Int. J. Mod. Phys. A 2011, 26, 3697–3720. [Google Scholar] [CrossRef]
- Arbab, A.I. A quantum universe and the solution to the cosmological problems. Gen. Relativ. Gravity 2014, 36, 2465–2491. [Google Scholar] [CrossRef]
- Arbab, A.I. A Bohr-like model of the planetary system and its gravitoelectric characteristics. Sud. J. Sci. 2013, 5, 21–31. [Google Scholar]
- Bowman, G. Essential Quantum Mechanics, 1st ed.; Oxford University Press: Oxford, country, 2008. [Google Scholar]
- Hawking, S. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Bekenstein, J.D. The quantum mass spectrum of the Kerr black hole. Lett. Nuovo Cimento 1974, 11, 467–470. [Google Scholar] [CrossRef]
- Makela, J. Black hole spectrum: Continuous or discrete? Phys. Lett. B 1997, 390, 115–118. [Google Scholar] [CrossRef]
- Arminjon, M. Energy and equations of motion in a tentative theory of gravity with a privileged reference frame. Arch. Mech. (Warsz.) 1996, 48, 25–52. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Nabulsi, R.A. From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity. Mathematics 2015, 3, 727-745. https://doi.org/10.3390/math3030727
El-Nabulsi RA. From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity. Mathematics. 2015; 3(3):727-745. https://doi.org/10.3390/math3030727
Chicago/Turabian StyleEl-Nabulsi, Rami Ahmad. 2015. "From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity" Mathematics 3, no. 3: 727-745. https://doi.org/10.3390/math3030727
APA StyleEl-Nabulsi, R. A. (2015). From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity. Mathematics, 3(3), 727-745. https://doi.org/10.3390/math3030727