Study of Random Walk Invariants for Spiro-Ring Network Based on Laplacian Matrices
Abstract
:1. Introduction
1.1. Global Mean First-Passage Time and the Kemeny Constant
1.2. Notation and Definitions
1.3. Spiro-Ring Networks
2. Main Lemmas
3. Kemeny’s Constant and the GMFPT of Spiro-Ring Networks
Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Spitzer, F. Principles of Random Walk; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM), New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Yang, X.S.; Deb, S. Multi-objective cuckoo search for design optimization. Comput. Oper. Res. 2013, 40, 1616–1624. [Google Scholar] [CrossRef]
- Adhikari, R.; Agrawal, R.K. A combination of artificial neural network and random walk models for financial time series forecasting. Neural Comput. Appl. 2014, 24, 1441–1449. [Google Scholar] [CrossRef]
- Verstraete, F.; Wolf, M.M.; Cirac, J.I. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 2009, 5, 633–636. [Google Scholar] [CrossRef]
- Codling, E.A.; Plank, M.J.; Benhamou, S. Random walk models in biology. J. R. Soc. Interface 2008, 5, 813–834. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Zhou, D.; Church, K. Query suggestion using hitting time. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (ACM), NapaValley, CA, USA, 26–30 October 2008; pp. 469–478. [Google Scholar]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. Rev. Sect. Phys. Lett. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Redner, S. A Guide to First-Passage Processes; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Polizzi, N.F.; Therien, M.J.; Beratan, D.N. Mean first-passage times in biology. Isr. J. Chem. 2016, 56, 816. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Oshanin, G.; Redner, S. First-Passage Phenomena and Their Applications; World Scientific: Singapore, 2014. [Google Scholar]
- Xie, Y.Y.; Chang, S.H.; Zhang, Z.P.; Zhang, M.; Yang, L. Efficient sampling of complex network with modified random walk strategies. Phys. A Stat. Mech. Appl. 2018, 492, 57–64. [Google Scholar] [CrossRef]
- Kemeny, G.; Snell, J.L. Finite Markov Chains; Van Nostrand: Princeton, NJ, USA, 1960. [Google Scholar]
- Van Mieghem, P. Graph Spectra for Complex Networks; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Zhu, H.Y.; Klein, D.J.; Lukovits, I. Extensions of the Wiener number. J. Chem. Inf. Comput. Sci. 1996, 36, 420–428. [Google Scholar] [CrossRef]
- Gutman, I.; Mohar, B. The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inform. Comput. Sci. 1996, 36, 982–985. [Google Scholar] [CrossRef]
- Chandra, A.K.; Raghavan, P.; Ruzzo, W.L.; Smolensky, R. The electrical resistance of a graph captures its commute and cover times. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, Edmonton, AB, Canada, 14–16 August 1989; pp. 574–586. [Google Scholar]
- Levene, M.; Loizou, G. Kemeny’s constant and the random surfer. Am. Math. 2002, 109, 741–745. [Google Scholar] [CrossRef]
- Xiao, W.; Gutman, I. Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 2003, 110, 284–289. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, B.; Zhang, H.; Zhou, S.; Guan, J.; Wang, Z. Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. Phys. Rev. E 2010, 81, 031118. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.; Ullah, A. Kemeny’s constant and global mean first passage time of random walks on octagonal cell network. Math. Methods Appl. Sci 2023, 46, 91779186. [Google Scholar] [CrossRef]
- Ali, U.; Ahmad, Y.; Xu, S.A.; Pan, X.F. Resistance distance-based indices and spanning trees of linear pentagonal-quadrilateral networks. Polycycl. Aromat. Compd. 2021, 42, 6352–6371. [Google Scholar] [CrossRef]
- Ali, U.; Raza, H.; Ahmed, Y. On normalized Laplacians, degree-Kirchhoff index and spanning tree of generalized phenylene. Symmetry 2021, 13, 1374. [Google Scholar] [CrossRef]
- Zhang, X.; Awais, H.M.; Javaid, M.; Siddiqui, M.K. Multiplicative Zagreb indices of molecular graphs. J. Chem. 2019, 2019, 5294198. [Google Scholar] [CrossRef]
- Ullah, A.; Zeb, A.; Zaman, S. A new perspective on the modeling and topological characterization of H-Naphtalenic nanosheets with applications. J. Mol. Model. 2022, 28, 211. [Google Scholar] [CrossRef]
- Kosar, Z.; Zaman, S.; Siddiqui, M.K. Structural characterization and spectral properties of hexagonal phenylene chain network. Eur. Phys. J. Plus 2023, 138, 415. [Google Scholar] [CrossRef]
- Zaman, S. Spectral analysis of three invariants associated to random walks on rounded networks with 2n-pentagons. Int. J. Comp. Math. 2022, 99, 465–485. [Google Scholar] [CrossRef]
- Ali, U.; Li, J.; Ahmad, Y.; Raza, Z. Computing the Laplacian spectrum and Wiener index of pentagonal-derivation cylinder/Möbius network. Heliyon 2024, 10, e24182. [Google Scholar] [CrossRef]
- Došlic, T.; Måloy, F. Chain hexagonal cacti: Matchings and independent sets. Discrete Math. 2010, 310, 1676–1690. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Zhao, P. Six-membered ring spiro chains with extremal Merrifield-Simmons index and Hosoya index. Match Commun. Math. Comput. Chem. 2009, 62, 657–665. [Google Scholar]
- Huang, J.; Li, S.C.; Li, X.C. The normalized Laplacian degree-Kirchhoff index and spanning trees of the linear polyomino chains. Appl. Math. Comput. 2016, 289, 324–334. [Google Scholar] [CrossRef]
- Zhang, F. (Ed.) The Schur Complement and Its Applications; Springer: New York, NY, USA, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, Y.; Ali, U.; Otera, D.E.; Pan, X.-F. Study of Random Walk Invariants for Spiro-Ring Network Based on Laplacian Matrices. Mathematics 2024, 12, 1309. https://doi.org/10.3390/math12091309
Ahmad Y, Ali U, Otera DE, Pan X-F. Study of Random Walk Invariants for Spiro-Ring Network Based on Laplacian Matrices. Mathematics. 2024; 12(9):1309. https://doi.org/10.3390/math12091309
Chicago/Turabian StyleAhmad, Yasir, Umar Ali, Daniele Ettore Otera, and Xiang-Feng Pan. 2024. "Study of Random Walk Invariants for Spiro-Ring Network Based on Laplacian Matrices" Mathematics 12, no. 9: 1309. https://doi.org/10.3390/math12091309