The Problems of Dimension Four, and Some Ramifications
Abstract
:1. Introduction
2. Open Problems and Dimension Four
3. Discrete Groups
4. Appendix (Explaining Some Technical Terms)
4.1. On GSC
4.2. On Yang-Mills Equations
4.3. On QSF
- If and are two finite complexes with the same fundamental group G, then if QSF if and only if is QSF. In this case we say that the group G is QSF.
- For fundamental groups of finite 3-complexes, QSF is equivalent to simple connectivity at infinity.
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poincaré, H. Cinquième complément à l’analysis situs. Rend. Circ. Mat. Palermo 1904, 18, 45–110. [Google Scholar] [CrossRef]
- Smale, S. On the Struture of Manifolds. Am. J. Math. 1962, 84, 387–399. [Google Scholar] [CrossRef]
- Smale, S. The Story of the Higher Dimensional Poincaré Conjecture (What actually happened on the beaches of Rio). Math. Intell. 1990, 12, 44–51. [Google Scholar] [CrossRef]
- Stallings, J.R. Polyhedral homotopy-spheres. Bull. Am. Math. Soc. 1960, 66, 485–488. [Google Scholar] [CrossRef]
- Zeeman, E.C. The generalised Poincaré conjecture. Bull. Am. Math. Soc. 1961, 67, 270. [Google Scholar] [CrossRef]
- Zeeman, E.C. The Poincaré Conjecture for n greater than or equal to 5. In Topology of 3-Manifolds and Related Topics; (Proc. The Univ. of Georgia Institute, 1961); Prentice-Hall: Upper Saddle River, NJ, USA, 1962; pp. 198–204. [Google Scholar]
- Stallings, J.R. The piecewise linear structure of Euclidean spaces. Proc. Cambr. Math. Soc. 1962, 58, 481–488. [Google Scholar] [CrossRef]
- Kervaire, M.; Milnor, J.W. Groups of homotopy spheres I. Ann. Math. 1963, 77, 504–537. [Google Scholar] [CrossRef]
- Milnor, J.W. On manifolds homeomorphic to the 7-sphere. Ann. Math. 1956, 64, 399–405. [Google Scholar] [CrossRef]
- Freedman, M. The Topology of four-dimensional manifolds. J. Diff. Geom. 1983, 17, 279–315. [Google Scholar] [CrossRef]
- Freedman, M.H.; Quinn, F. Topology of 4-Manifolds; Princeton mathematical Series 39; Princeton University Press: Princeton, NJ, USA, 1990. [Google Scholar]
- Donaldson, S.K. An application of gauge theory to four-dimensional topology. J. DIff. Geom. 1983, 18, 278–315. [Google Scholar] [CrossRef]
- Donaldson, S.K.; Kronheimer, P.B. The Geometry of Four-Manifolds; Oxford Mathematical Monographs; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv 2002, arXiv:math/0211159. [Google Scholar]
- Perelman, G. Ricci flow with surgery on three-manifolds. arXiv 2003, arXiv:math/0303109. [Google Scholar]
- Perelman, G. Finite extinction time for the solutions of the Ricci flow on certain three-manifolds. arXiv 2003, arXiv:math/0307245. [Google Scholar] [CrossRef]
- Mazur, B. A note on some contractible 4-manifolds. Ann. Math. 1961, 73, 221–228. [Google Scholar] [CrossRef]
- Poénaru, V. Les décompositions de l’hypercube en produit topologique. Bull. Soc. Math. France 1960, 88, 113–129. [Google Scholar] [CrossRef]
- Poénaru, V.; Tanasi, C. Some remarks on geometric simple connectivity. Acta Math. Hung. 1998, 81, 1–12. [Google Scholar] [CrossRef]
- Poénaru, V. What is…an infinite swindle. Notices AMS 2007, 54, 619–622. [Google Scholar]
- Mazur, B. On embeddings of spheres. Bull. AMS 1959, 65, 59–65. [Google Scholar] [CrossRef]
- Poénaru, V. All smooth four-dimensional Schoenflies balls are geometrically simply connected. arXiv 2016, arXiv:1609.05094. [Google Scholar]
- Poénaru, V. All Smooth Four-Dimensional Schoenflies Balls Are Geometrically Simply Connected; Surveys in geometry I; Springer: Cham, Switzerland, 2022; pp. 269–307. [Google Scholar]
- Akbulut, S. 4-Manifolds; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Gompf, R.E.; Stipsicz, A. 4-Manifolds and Kirby Calculus; Issue 20 of the book Graduate studies in mathematics; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Scorpan, A. The Wild World of 4-Manifolds; American Mathematical Society: Providence, RI, USA, 2005. [Google Scholar]
- Gromov, M. Asymptotic invariants of infinite groups. In Geometric Group Theory, Volume 2; London Math. Society Lecture Note Series 182; Cambridge University Press: Cambridge, UK, 1993; pp. 1–295. [Google Scholar]
- Otera, D.E. Topological tameness conditions of groups. Results and developments. Lith. Math. J. 2016, 3, 357–376. [Google Scholar] [CrossRef]
- Otera, D.E. On simplicial resolutions of groups. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2022, 116, 138. [Google Scholar] [CrossRef]
- Davis, M.W. Groups generated by reflections and aspherical manifolds not covered by Euclidean spaces. Ann. Math. 1983, 117, 293–324. [Google Scholar] [CrossRef]
- Poénaru, V. Equivariant, locally finite inverse representations with uniformly bounded zipping length, for arbitrary finitely presented groups. Geom. Dedicata 2013, 167, 91–121. [Google Scholar] [CrossRef]
- Poénaru, V. Geometric simple connectivity and finitely presented groups. arXiv 2014, arXiv:1404.4283. [Google Scholar]
- Poénaru, V. All finitely presented groups are QSF. arXiv 2014, arXiv:1409.7325. [Google Scholar]
- Otera, D.E.; Poénaru, V. Topics in Geometric Group Theory, Part I; Handbook of Group Actions, Volume V, Advanced Lectures in Mathematics; University of Chicago Press: Chicago, IL, USA, 2020; Volume 48, pp. 307–353. [Google Scholar]
- Poénaru, V. Topics in Geometric Group Theory, Part II; Handbook of Group Actions, Volume V, Advanced Lectures in Mathematics; University of Chicago Press: Chicago, IL, USA, 2020; Volume 48, pp. 347–398. [Google Scholar]
- Otera, D.E.; Poénaru, V. “Easy” Representations and the QSF property for groups. Bull. Belgian Math. Soc. Simon Stevin 2012, 19, 385–398. [Google Scholar] [CrossRef]
- Otera, D.E.; Poénaru, V. Finitely presented groups and the Whitehead nightmare. Groups Geom. Dyn. 2017, 11, 291–310. [Google Scholar] [CrossRef]
- Otera, D.E.; Poénaru, V.; Tanasi, C. On Geometric Simple Connectivity. Bull. Mathématique Société Des Sci. Mathématiques Roum. Nouv. Série 2010, 101, 157–176. [Google Scholar]
- Otera, D.E.; Russo, F.G.; Tanasi, C. On 3-dimensional WGSC inverse-representations of groups. Acta Math. Hung. 2017, 151, 379–390. [Google Scholar] [CrossRef]
- Brick, S.G.; Mihalik, M.L. The QSF property for groups and spaces. Math. Z. 1995, 220, 207–217. [Google Scholar] [CrossRef]
- Stallings, J.R. Brick’s quasi-simple filtrations for groups and 3-manifolds. In Geometric Group Theory, Volume 1; Volume 181 of London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1993; pp. 188–203. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poénaru, V. The Problems of Dimension Four, and Some Ramifications. Mathematics 2023, 11, 3826. https://doi.org/10.3390/math11183826
Poénaru V. The Problems of Dimension Four, and Some Ramifications. Mathematics. 2023; 11(18):3826. https://doi.org/10.3390/math11183826
Chicago/Turabian StylePoénaru, Valentin. 2023. "The Problems of Dimension Four, and Some Ramifications" Mathematics 11, no. 18: 3826. https://doi.org/10.3390/math11183826