Next Article in Journal
Gaskinetic Modeling on Dilute Gaseous Plume Impingement Flows
Next Article in Special Issue
Design and Performance of Modular 3-D Printed Solid-Propellant Rocket Airframes
Previous Article in Journal
Analysis of Pilot-Induced-Oscillation and Pilot Vehicle System Stability Using UAS Flight Experiments
Previous Article in Special Issue
Exploring Civil Drone Accidents and Incidents to Help Prevent Potential Air Disasters
Article Menu

Export Article

Open AccessArticle
Aerospace 2016, 3(4), 44; doi:10.3390/aerospace3040044

Continuation Methods for Nonlinear Flutter

Boreal Racing Shells, Seattle Rowing Center, 1116 West Ewing Street, Seattle, WA 98119, USA
Academic Editor: Konstantinos Kontis
Received: 27 October 2016 / Revised: 3 December 2016 / Accepted: 5 December 2016 / Published: 9 December 2016
(This article belongs to the Collection Feature Papers in Aerospace)
View Full-Text   |   Download PDF [426 KB, uploaded 9 December 2016]   |  

Abstract

Continuation methods are presented that are capable of treating frequency domain flutter equations, including multiple nonlinearities represented by describing functions. A small problem demonstrates how a series of continuation processes can find all limit-cycle oscillations within a specified region with a reasonable degree of confidence. Curves of the limit-cycle amplitude variation with velocity, indicating regions of stability and instability with colors, give a compact view of the nonlinear behavior throughout the flight regime. A continuation technique for reducing limit-cycle amplitudes by adjusting various system parameters is presented. These processes are economical enough to be a routine part of aircraft design and certification. View Full-Text
Keywords: aeroelasticity; multiple nonlinearity flutter; continuation methods; describing functions; bifurcation; continuation optimization; controlling LCO amplitudes aeroelasticity; multiple nonlinearity flutter; continuation methods; describing functions; bifurcation; continuation optimization; controlling LCO amplitudes
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Meyer, E.E. Continuation Methods for Nonlinear Flutter. Aerospace 2016, 3, 44.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Aerospace EISSN 2226-4310 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top