Next Article in Journal
A Sequential Method of Detecting Abrupt Changes in the Correlation Coefficient and Its Application to Bering Sea Climate
Next Article in Special Issue
Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part I. Comprehensive Model Evaluation and Trend Analysis for 2006 and 2011
Previous Article in Journal / Special Issue
Hydrological Impacts of the Changes in Simulated Rainfall Fields on Nakanbe Basin in Burkina Faso
Article Menu

Export Article

Open AccessArticle
Climate 2015, 3(3), 459-473; doi:10.3390/cli3030459

Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

1
Ecole Nationale d'Ingénieurs de Tunis, Université de Tunis, El Manar 1, Tunisia
2
Institut de Recherche pour le Développement (IRD), Hydrosciences Montpellier, France
*
Author to whom correspondence should be addressed.
Academic Editor: Zewdu T. Segele
Received: 23 March 2015 / Revised: 23 June 2015 / Accepted: 23 June 2015 / Published: 2 July 2015
View Full-Text   |   Download PDF [605 KB, uploaded 6 July 2015]   |  

Abstract

This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2) in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH) of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced) is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT) from the European program ENSEMBLES, forced by two global climate models (GCM): ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature) are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to reproduce the occurrence of dry days but still underestimates them. From the statistical distribution point of view, corrected SMH precipitation data introduced into the MBBH model were not able to reproduce extreme runoff values generated by observed precipitation data during validation (larger than 80 mm/month). This may be due to the SMH weakness in reproducing moderate and high rainfall levels even after bias correction. This approach may be considered as a way to use regional climate models (RCM) model outputs for studying hydrological impacts. View Full-Text
Keywords: water balance; watershed; RCM; bias correction; North Africa; rainfall water balance; watershed; RCM; bias correction; North Africa; rainfall
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Foughali, A.; Tramblay, Y.; Bargaoui, Z.; Carreau, J.; Ruelland, D. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions. Climate 2015, 3, 459-473.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Climate EISSN 2225-1154 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top