Recent Warming Trends in the Arabian Sea: Causative Factors and Physical Mechanisms
Abstract
:1. Introduction
1.1. Arabian Sea Warming and Enhanced Cyclone Activity
1.2. Tropical Cyclone Formation and Equatorial Wave Activity
1.3. Role of Kelvin Wave Activity
2. Data and Methods
2.1. Data
2.2. Methodology
3. Results and Discussion
3.1. Analysis of Ocean Warming at Various Sub-Domains in the NIO
3.2. Role of Second Downwelling Kelvin Wave
3.3. Inter-Basin Scale Heat Transport
3.4. Role of Surface Heat Flux and Entrainment in the SEAS
3.5. Frequency of Positive Indian Ocean Dipole (IOD) Months
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhila, R.S.; Kuttippurath, J.; Sarojini, B.B.; Chakraborty, A.; Rahul, R. Observed tropical cyclone-driven cold wakes in the context of rapid warming of the Arabian Sea. J. Oper. Oceanogr. 2022, 1–16. [Google Scholar] [CrossRef]
- Baburaj, P.P.; Abhilash, S.; Nirmal, C.A.; Sreenath, A.V.; Mohankumar, K.; Sahai, A.K. Increasing incidence of Arabian Sea cyclones during the monsoon onset phase: Its impact on the robustness and advancement of Indian summer monsoon. Atmos. Res. 2022, 267, 105915. [Google Scholar] [CrossRef]
- Francis, D.; Chaboureau, J.-P.; Nelli, N.; Cuesta, J.; Alshamsi, N.; Temimi, M.; Pauluis, O.; Xue, L. Summertime duststorms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmos. Res. 2020, 2020, 105364. [Google Scholar]
- Francis, D.; Temimi, M.; Fonseca, R.; Nelli, N.R.; Abida, R.; Weston, M.; Wehbe, Y. On the analysis of a summer-time convective event in a hyper-arid environment. Q. J. R. Meteorol. Soc. 2021, 147, 501–525. [Google Scholar] [CrossRef]
- Murty, T.; El-Sabh, M. Cyclones and storm surges in the Arabian Sea: A brief review. Deep Sea Res. Part A Oceanogr. Res. Pap. 1984, 31, 665–670. [Google Scholar] [CrossRef]
- Bhaskaran, P.K.; Kalra, R.; Dube, S.K.; Sinha, P.C.; Rao, A.D.; Kumar, R.; Sarkar, A. Extreme wave conditions over the Bay of Bengal during a severe cyclone—Simulation experiment with two spectral wave models. Mar. Geod. 2000, 23, 91–102. [Google Scholar] [CrossRef]
- Bhaskaran, P.K.; Nayak, S.; Bonthu, S.R.; Murty, P.L.N.; Sen, D. Performance and validation of a coupled parallel ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal. Environ. Fluid Mech. 2013, 13, 601–623. [Google Scholar] [CrossRef]
- Bhaskaran, P.K.; Gayathri, R.; Murty, P.L.N.; Bonthu, S.R.; Sen, D. A numerical study of coastal inundation and its validation for Thane Cyclone in the Bay of Bengal. Coast. Eng. 2013, 83, 108–118. [Google Scholar] [CrossRef]
- Gayathri, R.; Murty, P.L.N.; Bhaskaran, P.K.; Srinivasa Kumar, T. A numerical study of hypothetical storm surge and coastal inundation for AILA cyclone in the Bay of Bengal. Environ. Fluid Mech. 2016, 16, 429–452. [Google Scholar] [CrossRef]
- Murty, P.L.N.; Sandhya, K.G.; Bhaskaran, P.K.; Jose, F.; Gayathri, R.; Balakrishnan Nair, T.M.; Srinivasa Rao, T.; Shenoi, S.S.C. A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal. Coast. Eng. 2014, 93, 71–81. [Google Scholar] [CrossRef]
- Nayak, S.; Bhaskaran, P.K.; Venkatesan, R. Near-shore wave induced setup along Kalpakkam coast during an extreme cyclone event in the Bay of Bengal. Ocean Eng. 2012, 55, 52–61. [Google Scholar] [CrossRef]
- Vissa, N.K.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Response of Upper Ocean during passage of MALA cyclone utilizing ARGO data. Int. J. Appl. Earth Obs. Geo-Inf. 2012, 14, 149–159. [Google Scholar] [CrossRef]
- Vissa, N.K.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Response of oceanic cyclogenesis metrics for NARGIS cyclone: A case study. Atmos Sci. Lett. 2013, 14, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Vissa, N.K.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal. Nat. Hazards 2013, 68, 351–371. [Google Scholar] [CrossRef]
- Vissa, N.K.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Response of Upper Ocean and Impact of Barrier Layer on SIDR cyclone induced sea surface cooling. Ocean Sci. J. 2013, 48, 279–288. [Google Scholar] [CrossRef]
- Gayathri, R.; Bhaskaran, P.K.; Jose, F. Coastal Inundation Research: An Overview of the Processes. Curr. Sci. 2017, 112, 267–278. [Google Scholar] [CrossRef]
- Nayak, S.; Bhaskaran, P.K. Coastal Vulnerability due to extreme waves at Kalpakkam based on historical tropical cyclones in the Bay of Bengal. Int. J. Clim. 2014, 34, 1460–1471. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones—A GIS based approach for the Odisha coast. J Environ. Management. 2017. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Prediction of storm surge and coastal inundation using Artificial Neural Network—A case study for 1999 Odisha Super Cyclone. Weather and Climate Extremes. 2019. [Google Scholar] [CrossRef]
- Albert, J.; Krishnan, A.; Bhaskaran, P.K.; Singh, K.S. Role and influence of key atmospheric parameters in large-scale environmental flow associated with tropical cyclogenesis and ENSO in the North Indian Ocean basin. Clim. Dyn. 2021, 58, 1–18. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.A. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 1998, 65, 233–240. [Google Scholar] [CrossRef]
- Emanuel, K.A. Sensitivity of Tropical Cyclones to Surface Exchange Coefficients and a Revised Steady-State Model incorporating Eye Dynamics. J. Atmos. Sci. 1995, 52, 3969–3976. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Kumar, S.P.; Roshin, R.P.; Narvekar, J.; Kumar, P.D.; Vivekanandan, E. Response of the Arabian Sea to global warming and associated regional climate shift. Mar. Environ. Res. 2009, 68, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAdam, R.; Masina, S.; Balmaseda, M.; Gualdi, S.; Senan, R.; Mayer, M. Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems. Clim. Dyn. 2022, 58, 3335–3350. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Masson, S. The Curious Case of Indian Ocean Warming. J. Clim. 2014, 27, 8501–8509. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef] [Green Version]
- Sumesh, K.G.; Kumar, M.R.R. Tropical cyclones over north Indian Ocean during El-Niño Modoki years. Nat. Hazards 2013, 68, 1057–1074. [Google Scholar] [CrossRef]
- Suchandra, A.B.; Mandal, A. Variability of Ocean Features and their Impact on Cyclogenesis over Arabian Sea During Post Monsoon Season. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Ma, J.; Feng, M.; Lan, J.; Hu, D. Projected Future Changes of Meridional Heat Transport and Heat Balance of the Indian Ocean. Geophys. Res. Lett. 2020, 47, 1–9. [Google Scholar] [CrossRef]
- Chowdhury, R.R.; Kumar, S.P.; Narvekar, J.; Chakraborty, A. Back-to-back occurrence of tropical cyclones in the Arabian Sea during October–November 2015: Causes and responses. J. Geophys. Res. Ocean. 2020, 125, e2019JC015836. [Google Scholar] [CrossRef]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Abraham, J.; Zhu, J. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 2017, 3, e1601545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.K.; Park, W.; Baringer, M.O.; Gordon, A.L.; Huber, B.; Liu, Y. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 2015, 8, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Xie, S.-P.; Lu, J. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 2016, 7, 10926. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K. Uncertainty in Hurricanes and Global Warming. Science 2005, 308, 1753–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, Y. Response of tropical cyclone potential intensity over the north Indian Ocean to global warming. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Evan, A.T.; Camargo, S.J. A climatology of Arabian Sea cyclonic storms. J. Clim. 2011, 24, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res. Atmos. 2001, 106, 14771–14781. [Google Scholar] [CrossRef]
- Hu, A.; Meehl, G.A. Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Sanna, A.; Fogli, P.G.; Manzini, E.; Vichi, M.; Oddo, P.; Navarra, A. Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model. J. Clim. 2011, 24, 4368–4384. [Google Scholar] [CrossRef] [Green Version]
- Sriver, R.; Huber, M. Low frequency variability in globally integrated tropical cyclone power dissipation. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Tropical cyclones. Ann. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Mohan, G.M.; Naidu, C.V.; Baskaran, R.; Venkatraman, B. Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3D ocean model coupled to ARW. J. Geophys. Res. Atmos. 2016, 121, 9400–9421. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.A.; Ginis, I.; Kurihara, Y. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res. Atmos. 1993, 98, 23245–23263. [Google Scholar] [CrossRef]
- Bosart, L.F.; Velden, C.S.; Bracken, W.E.; Molinari, J.; Black, P.G. Environmental Influences on the Rapid Intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Weather Rev. 2000, 128, 322. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Chen, S.-Y.; Hill, C.M.; Huang, C.-Y. Control Parameters for the Influence of a Mesoscale Mountain Range on Cyclone Track Continuity and Deflection. J. Atmos. Sci. 2005, 62, 1849–1866. [Google Scholar] [CrossRef]
- Schade, L.R.; Emanuel, K.A. The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Bessafi, M.; Wheeler, M.C. Modulation of south Indian Ocean tropical cyclones by the Mad-den–Julian oscillation and convectively coupled equatorial waves. Mon. Weather Rev. 2006, 134, 638–656. [Google Scholar] [CrossRef]
- Frank, W.M.; Roundy, P.E. The Role of Tropical Waves in Tropical Cyclogenesis. Mon. Weather Rev. 2006, 134, 2397–2417. [Google Scholar] [CrossRef]
- Schreck, C.J., III; Molinari, J. Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Weather Rev. 2011, 139, 2723–2734. [Google Scholar] [CrossRef]
- Schreck, C.J.; Molinari, J.; Aiyyer, A. A global view of equatorial waves and tropical cyclogenesis. Mon. Weather Rev. 2012, 140, 774–788. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.W.; Tao, W.K.; Lin, Y.L.; Laing, A. Genesis of twin tropical cyclones as revealed by a global mesoscale model: The role of mixed Rossby gravity waves. J. Geophys. Res. Atmos. 2012, 117, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Ventrice, M.J.; Thorncroft, C.D.; Janiga, M.A. Atlantic Tropical Cyclogenesis: A Three-Way Interaction between an African Easterly Wave, Diurnally Varying Convection, and a Convectively Coupled Atmospheric Kelvin Wave. Mon. Weather Rev. 2012, 140, 1108–1124. [Google Scholar] [CrossRef]
- Ventrice, M.J.; Thorncroft, C.D.; Schreck, C.J., III. Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Weather Rev. 2012, 140, 2198–2214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Madden-Julian oscillation. Rev. Geophys. 2005, 43, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Shankar, D.; Vinayachandran, P.N.; Unnikrishnan, A.S. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 2002, 52, 63–120. [Google Scholar] [CrossRef]
- Shenoi, S.S.C. Intra-seasonal variability of the coastal currents around India: A review of the evidences from new observations. Indian J. Geo Mar. Sci. 2010, 39, 489–496. [Google Scholar]
- Rao, R.R.; Kumar, M.G.; Ravichandran, M.; Rao, A.R.; Gopalakrishna, V.V.; Thadathil, P. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 1–13. [Google Scholar] [CrossRef]
- Sreenivas, P.; Gnanaseelan, C.; Prasad, K. Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal. Glob. Planet. Chang. 2012, 80, 215–225. [Google Scholar] [CrossRef]
- Yu, L.; O’Brien, J.J.; Yang, J. On the remote forcing of the circulation in the BoB. J. Geophys. Res. 1991, 96, 20449–20454. [Google Scholar] [CrossRef]
- Subrahmanyam, B.; Robinson, I.S.; Blundell, J.R.; Challenor, P.G. Indian Ocean Rossby waves observed in TOPEX/POSEIDON altimeter data and in model simulations. Int. J. Remote Sens. 2001, 22, 141–167. [Google Scholar] [CrossRef]
- McCreary, J.P., Jr.; Kundu, P.K.; Molinari, R.L. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr. 1993, 31, 181–244. [Google Scholar] [CrossRef]
- Schott, F.A.; Xie, S.P.; McCreary, J.P., Jr. Indian Ocean circulation and climate variability. Rev. Geophys. 2009, 47, 47. [Google Scholar] [CrossRef] [Green Version]
- Amol, P.; Bemal, S.; Shankar, D.; Jain, V.; Thushara, V.; Vijith, V.; Vinayachandran, P.N. Modulation of chlorophyll concentration by downwelling Rossby waves during the winter monsoon in the southeastern Arabian Sea. Prog. Oceanogr. 2020, 186, 102365. [Google Scholar] [CrossRef]
- Shenoi, S.S.C.; Shankar, D.; Shetye, S.R. Remote forcing annihilates barrier layer in south-eastern Arabian Sea. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.R.; Jitendra, V.; GirishKumar, M.S.; Ravichandran, M.; Ramakrishna, S.S.V.S. Interannual variability of the Arabian Sea Warm Pool: Observations and governing mechanisms. Clim. Dyn. 2015, 44, 2119–2136. [Google Scholar] [CrossRef]
- Shenoi, S.C.; Shankar, D.; Gopalakrishna, V.V.; Durand, F. Role of ocean in the genesis and annihilation of the core of the warm pool in the southeastern Arabian Sea. Mausam 2005, 56, 147–160. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; Mogensen, K.; Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 2019, 15, 779–808. [Google Scholar] [CrossRef] [Green Version]
- Liebmann, B.; Smith, C.A. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Kumar, B.P.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J. TropFlux: Air-sea fluxes for the global tropical oceans—Description and evaluation. Clim. Dyn. 2011, 38, 1521–1543. [Google Scholar] [CrossRef]
- Kumar, B.P.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.; Cronin, M.F.; Pinsard, F.; Reddy, K.G. TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products. Clim. Dyn. 2012, 40, 2049–2071. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X.; Weller, R.A. Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Woods Hole Oceanogr. Inst. OAFlux Proj. Tech. Rep. (OA-2008-01) 2008, 1–64. [Google Scholar]
- Kikuchi, K.; Wang, B.; Kajikawa, Y. Bimodal representation of the tropical intraseasonal oscillation. Clim. Dyn. 2012, 38, 1989–2000. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Dias, J.; Straub, K.H.; Wheeler, M.C.; Tulich, S.N.; Kikuchi, K.; Weickmann, K.M.; Ventrice, M.J. A Comparison of OLR and Circulation-Based Indices for Tracking the MJO. Mon. Weather Rev. 2014, 142, 1697–1715. [Google Scholar] [CrossRef]
- Matthews, A.J. Primary and successive events in the Madden–Julian Oscillation. Q. J. R. Meteorol. Soc. 2008, 134, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.C.; Hendon, H.H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Bhaskaran, P.K. Regional wise characteristic study of significant wave height for the Indian Ocean. Clim. Dyn. 2020, 54, 3405–3423. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 2007, 450, 1066–1070. [Google Scholar] [CrossRef]
- Hari, V.; Pathak, A.; Koppa, A. Dual response of Arabian Sea cyclones and strength of Indian monsoon to Southern Atlantic Ocean. Clim. Dyn. 2021, 56, 2149–2161. [Google Scholar] [CrossRef]
- Albert, J.; Bhaskaran, P.K. Ocean heat content and its role in tropical cyclogenesis for the Bay of Bengal basin. Clim. Dyn. 2020, 55, 3343–3362. [Google Scholar] [CrossRef]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.T.; Mayer, M.; Balmaseda, M.; Zhu, J. Evolution of Ocean Heat Content related to ENSO. J. Clim. 2019, 32, 3529–3556. [Google Scholar] [CrossRef]
- Sprintall, J.; Wijfels, S.E.; Molcard, R.; Jaya, I. Direct estimates of the Indonesian Throughfow entering the Indian Ocean: 2004–2006. J. Geophys. Res. 2009, 114, C07001. [Google Scholar] [CrossRef]
- Mayer, M.; Balmaseda, M.A.; Haimberger, L. Unprecedented 2015/2016 Indo-Pacific heat transfer speeds up tropical Pacific heat recharge. Geophys. Res. Lett. 2018, 45, 3274–3284. [Google Scholar] [CrossRef]
- Mayer, M.; Haimberger, L.; Balmaseda, M.A. On the energy exchange between tropical ocean basins related to ENSO. J. Clim. 2014, 27, 6393–6403. [Google Scholar] [CrossRef]
- Bryan, K. Measurements of meridional heat transport by ocean currents. J. Geophys. Res. Earth Surf. 1962, 67, 3403–3414. [Google Scholar] [CrossRef]
- Hall, M.M.; Bryden, H.L. Direct estimates and mechanisms of ocean heat transport. Deep Sea Res. Part A Oceanogr. Res. Pap. 1982, 29, 339–359. [Google Scholar] [CrossRef]
- Zheng, Y.; Giese, B.S. Ocean heat transport in Simple Ocean Data Assimilation: Structure and mechanisms. J. Geophys. Res. Earth Surf. 2009, 114, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.D.; Shay, L.K. The Role of Oceanic Mesoscale Features on the Tropical Cyclone—Induced Mixed Layer Response: A Case Study. J. Phys. Oceanogr. 2003, 33, 649–676. [Google Scholar] [CrossRef]
- Wang, X.; Han, G.; Qi, Y.; Li, W. Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Ocean. 2011, 52, 367–385. [Google Scholar] [CrossRef]
- Rhein, M.; Rintoul, S.R.; Aoki, S.; Campos, E.J.D.; Chambers, D. Observations: Ocean. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Trenberth, K.E.; Fasullo, J.T.; Balmaseda, M.A. Earth’s energy imbalance. J. Clim. 2014, 27, 3129–3144. [Google Scholar] [CrossRef] [Green Version]
- Von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P.-P.; et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhu, J.; Abraham, J.; Trenberth, K.E.; Fasullo, J.T.; Zhang, B.; Yu, F.; Wan, L.; Chen, X.; Song, X. 2018 Continues Record Global Ocean Warming. Adv. Atmos. Sci. 2019, 36, 249–252. [Google Scholar] [CrossRef]
- Shankar, D.; Shetye, S.R. On the dynamics of the Lakshadweep high and low in the southeastern Arabian Sea. J. Geophys. Res. Ocean. 1997, 102, 12551–12562. [Google Scholar] [CrossRef]
- Shenoi, S.S.C.; Shankar, D.; Shetye, S.R. On the sea surface temperature high in the Lakshad-weep Sea before the onset of the southwest monsoon. J. Geophys. Res. Ocean. 1999, 104, 15703–15712. [Google Scholar] [CrossRef] [Green Version]
- Shetye, S.; Shenoi, S.; Gouveia, A.; Michael, G.; Sundar, D.; Nampoothiri, G. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon. Cont. Shelf Res. 1991, 11, 1397–1408. [Google Scholar] [CrossRef]
- Durand, F.; Shetye, S.R.; Vialard, J.; Shankar, D.; Shenoi, S.S.C.; Ethe, C.; Madec, G. Impact of temperature inversions on SST evolution in the south-eastern Arabian Sea during the pre-summer monsoon season. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Rao, R.R.; Sivakumar, R. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Fosu, B.; He, J.; Liguori, G. Equatorial Pacific warming attenuated by SST warming patterns in the tropical Atlantic and Indian Oceans. Geophys. Res. Lett. 2020, 47, e2020GL088231. [Google Scholar] [CrossRef]
- Li, X.; Xie, S.P.; Gille, S.; Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Chang. 2016, 6, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.P.; Philander, S.G.H. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 1994, 46, 340–350. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.P.; Deser, C.; Vecchi, G.; Ma, J.; Teng, H.; Wittenberg, A. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 2010, 23, 966–986. [Google Scholar] [CrossRef] [Green Version]
- de Boyer Montegut, C.; Mignot, J.; Lazar, A.; Cravatte, S. Control of salinity on the mixed layer depth in the world ocean. Part I: General description. J. Geophys. Res. Ocean. 2007, 112, 1–12. [Google Scholar] [CrossRef]
- Shenoi, S.S.C.; Shankar, D.; Shetye, S.R. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res. 2002, 107, 1–14. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Wang, G.; Weller, E.; Wu, L.; Ashok, K.; Masumoto, Y.; Yamagata, T. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 2014, 510, 254–258. [Google Scholar] [CrossRef]
Intensity | Name of the Cyclone | Time Period |
---|---|---|
Super Cyclonic Storms (SuCS) | GONU | 1–7 June 2007 |
KYARR | 24 October–3 November 2019 | |
Extremely Severe Cyclonic Storms (ESCS) | ARB 01 | 21–28 May 2001 |
NILOFER | 23–31 October 2014 | |
CHAPALA | 28 October–4 November 2015 | |
MEGH | 4–10 November 2015 | |
TAUKTE | 14–19 May 2021 | |
Very Severe Cyclonic Storm (VSCS) | PHET | 31 May–7 June, 2010 |
Severe Cyclonic Storm (SCS) | NISARGA | 1–4 June 2020 |
Label | Name | Region | Domain |
---|---|---|---|
ARB | Reg 1 | Arabian Sea | EQ: 30° N; 30° E: 78° E |
BoB | Reg 2 | Bay of Bengal | EQ: 30° N; 78° E: 105° E |
SCS | Reg 3 | South China Sea | EQ: 30° N; 105° E: 120° E |
SIO (A) | Reg 4 | Tropical South Indian Ocean—A | 35° S: EQ; 30° E: 78° E |
SIO (B) | Reg 5 | Tropical South Indian Ocean—B | 35° S: EQ; 78° E: 120° E |
WSO | Reg 6 | Western extra-tropical south Indian Ocean and the Southern Ocean (south of 60° S) | 63° S: 35° S; 30° E: 76° E |
ESO | Reg 7 | Eastern extra-tropical south Indian Ocean and the Southern Ocean (south of 60° S) | 63° S: 35° S; 76° E: 120° E |
SEAS (A) | D1 | South eastern Arabian Sea—A | 2° N: 7°N; 73° E: 80° E |
SEAS (B) | D2 | South eastern Arabian Sea—B | 4° N: 14°N; 68° E: 78° E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, J.; Gulakaram, V.S.; Vissa, N.K.; Bhaskaran, P.K.; Dash, M.K. Recent Warming Trends in the Arabian Sea: Causative Factors and Physical Mechanisms. Climate 2023, 11, 35. https://doi.org/10.3390/cli11020035
Albert J, Gulakaram VS, Vissa NK, Bhaskaran PK, Dash MK. Recent Warming Trends in the Arabian Sea: Causative Factors and Physical Mechanisms. Climate. 2023; 11(2):35. https://doi.org/10.3390/cli11020035
Chicago/Turabian StyleAlbert, Jiya, Venkata Sai Gulakaram, Naresh Krishna Vissa, Prasad K. Bhaskaran, and Mihir K. Dash. 2023. "Recent Warming Trends in the Arabian Sea: Causative Factors and Physical Mechanisms" Climate 11, no. 2: 35. https://doi.org/10.3390/cli11020035