Next Article in Journal
Spatial Heterogeneity, Scale, Data Character and Sustainable Transport in the Big Data Era
Previous Article in Journal
Analysis of Land Use Change and Expansion of Surface Urban Heat Island in Bogor City by Remote Sensing
Previous Article in Special Issue
An Efficient Shortest Path Routing Algorithm for Directed Indoor Environments
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessFeature PaperArticle
ISPRS Int. J. Geo-Inf. 2018, 7(5), 166; https://doi.org/10.3390/ijgi7050166

Assessing the Influence of Spatio-Temporal Context for Next Place Prediction using Different Machine Learning Approaches

1
Department of Geography, University of Zurich, 8057 Zurich, Switzerland
2
Institute of Cartography and Geoinformation, ETH Zurich, 8093 Zurich, Switzerland
3
Institute for Pervasive Computing, ETH Zurich, CH-8092 Zurich, Switzerland
*
Author to whom correspondence should be addressed.
Received: 1 March 2018 / Revised: 20 April 2018 / Accepted: 23 April 2018 / Published: 27 April 2018
View Full-Text   |   Download PDF [2471 KB, uploaded 3 May 2018]   |  

Abstract

For next place prediction, machine learning methods which incorporate contextual data are frequently used. However, previous studies often do not allow deriving generalizable methodological recommendations, since they use different datasets, methods for discretizing space, scales of prediction, prediction algorithms, and context data, and therefore lack comparability. Additionally, the cold start problem for new users is an issue. In this study, we predict next places based on one trajectory dataset but with systematically varying prediction algorithms, methods for space discretization, scales of prediction (based on a novel hierarchical approach), and incorporated context data. This allows to evaluate the relative influence of these factors on the overall prediction accuracy. Moreover, in order to tackle the cold start problem prevalent in recommender and prediction systems, we test the effect of training the predictor on all users instead of each individual one. We find that the prediction accuracy shows a varying dependency on the method of space discretization and the incorporated contextual factors at different spatial scales. Moreover, our user-independent approach reaches a prediction accuracy of around 75%, and is therefore an alternative to existing user-specific models. This research provides valuable insights into the individual and combinatory effects of model parameters and algorithms on the next place prediction accuracy. The results presented in this paper can be used to determine the influence of various contextual factors and to help researchers building more accurate prediction models. It is also a starting point for future work creating a comprehensive framework to guide the building of prediction models. View Full-Text
Keywords: next place prediction; trajectories; neural networks; context next place prediction; trajectories; neural networks; context
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Urner, J.; Bucher, D.; Yang, J.; Jonietz, D. Assessing the Influence of Spatio-Temporal Context for Next Place Prediction using Different Machine Learning Approaches. ISPRS Int. J. Geo-Inf. 2018, 7, 166.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
ISPRS Int. J. Geo-Inf. EISSN 2220-9964 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top