PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Data Extraction and Methodological Quality Assessment
3. Results
3.1. Analysis of the Evidence
3.1.1. (R)-11C-PK11195
3.1.2. [18F]-FEPPA
3.1.3. 11C-PBR28
3.1.4. [11C]-DPA-713
3.1.5. [18F]-DPA-714
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Hu, K.; Shao, T.; Hou, L.; Zhang, S.; Ye, W.; Josephson, L.; Meyer, J.H.; Zhang, M.R.; Vasdev, N.; et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm. Sin. B 2021, 11, 373–393. [Google Scholar] [CrossRef]
- Lee, Y.; Park, Y.; Nam, H.; Lee, J.W.; Yu, S.W. Translocator protein (TSPO): The new story of the old protein in neuroinflammation. BMB Rep. 2020, 53, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Werry, E.L.; Bright, F.M.; Piguet, O.; Ittner, L.M.; Halliday, G.M.; Hodges, J.R.; Kiernan, M.C.; Loy, C.T.; Kril, J.J.; Kassiou, M. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int. J. Mol. Sci. 2019, 20, 3161. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzano, G.; Frantellizzi, V.; De Bartolo, M.I.; De Feo, M.S.; Conte, A.; Fabbrini, G.; De Vincentis, G.; Berardelli, A. Isolated head tremor: A DAT-SPECT and somatosensory temporal discrimination study. Park. Relat. Disord. 2020, 81, 56–59. [Google Scholar] [CrossRef]
- Frantellizzi, V.; Lavelli, V.; Ferrari, C.; Sardaro, A.; Farcomeni, A.; Pacilio, M.; Borrazzo, C.; Pani, R.; Rubini, G.; Vincentis, G. Diagnostic Value of the Early Heart-to-Mediastinum Count Ratio in Cardiac 123I-mIBG Imaging for Parkinson’s Disease. Curr. Radiopharm. 2021, 14, 64–69. [Google Scholar] [CrossRef]
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016, 139, 136–153. [Google Scholar] [CrossRef]
- Frantellizzi, V.; Pani, A.; Ricci, M.; Locuratolo, N.; Fattapposta, F.; De Vincentis, G. Neuroimaging in Vascular Cognitive Impairment and Dementia: A Systematic Review. J. Alzheimers Dis. 2020, 73, 1279–1294. [Google Scholar] [CrossRef] [PubMed]
- Frantellizzi, V.; Conte, M.; De Vincentis, G. Hybrid Imaging of Vascular Cognitive Impairment. Semin. Nucl. Med. 2021, 51, 286–295. [Google Scholar] [CrossRef]
- Filippi, L.; Schillaci, O.; Palumbo, B. Neuroimaging with PET/CT in chronic traumatic encephalopathy: What nuclear medicine can do to move the field forward. Expert Rev. Mol. Diagn. 2022, 22, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.R.; Guo, Q.; Kalk, N.J.; Colasanti, A.; Kalogiannopoulou, D.; Dimber, R.; Lewis, Y.L.; Libri, V.; Barletta, J.; Ramada-Magalhaes, J.; et al. Determination of [(11)C]PBR28 binding potential in vivo: A first human TSPO blocking study. J. Cereb. Blood Flow Metab. 2014, 34, 989–994. [Google Scholar] [CrossRef]
- Ouchi, Y.; Yoshikawa, E.; Sekine, Y.; Futatsubashi, M.; Kanno, T.; Ogusu, T.; Torizuka, T. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 2005, 57, 168–175. [Google Scholar] [CrossRef]
- Kobylecki, C.; Counsell, S.J.; Cabanel, N.; Wächter, T.; Turkheimer, F.E.; Eggert, K.; Oertel, W.; Brooks, D.J.; Gerhard, A. Diffusion-weighted imaging and its relationship to microglial activation in parkinsonian syndromes. Park. Relat. Disord. 2013, 19, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Edison, P.; Ahmed, I.; Fan, Z.; Hinz, R.; Gelosa, G.; Ray Chaudhuri, K.; Walker, Z.; Turkheimer, F.E.; Brooks, D.J. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 2013, 38, 938–949. [Google Scholar] [CrossRef]
- Iannaccone, S.; Cerami, C.; Alessio, M.; Garibotto, V.; Panzacchi, A.; Olivieri, S.; Gelsomino, G.; Moresco, R.M.; Perani, D. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Park. Relat. Disord. 2013, 19, 47–52. [Google Scholar] [CrossRef]
- Gerhard, A.; Pavese, N.; Hotton, G.; Turkheimer, F.; Es, M.; Hammers, A.; Eggert, K.; Oertel, W.; Banati, R.B.; Brooks, D.J. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 2006, 21, 404–412. [Google Scholar] [CrossRef]
- Koshimori, Y.; Ko, J.H.; Mizrahi, R.; Rusjan, P.; Mabrouk, R.; Jacobs, M.F.; Christopher, L.; Hamani, C.; Lang, A.E.; Wilson, A.A.; et al. Imaging Striatal Microglial Activation in Patients with Parkinson’s Disease. PLoS ONE 2015, 10, e0138721. [Google Scholar] [CrossRef]
- Ghadery, C.; Koshimori, Y.; Coakeley, S.; Harris, M.; Rusjan, P.; Kim, J.; Houle, S.; Strafella, A.P. Microglial activation in Parkinson’s disease using [(18)F]-FEPPA. J. Neuroinflamm. 2017, 14, 8. [Google Scholar] [CrossRef]
- Ghadery, C.; Koshimori, Y.; Christopher, L.; Kim, J.; Rusjan, P.; Lang, A.E.; Houle, S.; Strafella, A.P. The Interaction Between Neuroinflammation and β-Amyloid in Cognitive Decline in Parkinson’s Disease. Mol. Neurobiol. 2020, 57, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Jucaite, A.; Svenningsson, P.; Rinne, J.O.; Cselényi, Z.; Varnäs, K.; Johnström, P.; Amini, N.; Kirjavainen, A.; Helin, S.; Minkwitz, M.; et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: A PET study in Parkinson’s disease. Brain 2015, 138, 2687–2700. [Google Scholar] [CrossRef]
- Varnäs, K.; Cselényi, Z.; Jucaite, A.; Halldin, C.; Svenningsson, P.; Farde, L.; Varrone, A. PET imaging of [(11)C]PBR28 in Parkinson’s disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Jucaite, A.; Cselényi, Z.; Kreisl, W.C.; Rabiner, E.A.; Varrone, A.; Carson, R.E.; Rinne, J.O.; Savage, A.; Schou, M.; Johnström, P.; et al. Glia Imaging Differentiates Multiple System Atrophy from Parkinson’s Disease: A Positron Emission Tomography Study with [(11) C]PBR28 and Machine Learning Analysis. Mov. Disord. 2022, 37, 119–129. [Google Scholar] [CrossRef]
- Terada, T.; Yokokura, M.; Yoshikawa, E.; Futatsubashi, M.; Kono, S.; Konishi, T.; Miyajima, H.; Hashizume, T.; Ouchi, Y. Extrastriatal spreading of microglial activation in Parkinson’s disease: A positron emission tomography study. Ann. Nucl. Med. 2016, 30, 579–587. [Google Scholar] [CrossRef]
- Fang, Y.D.; McConathy, J.E.; Yacoubian, T.A.; Zhang, Y.; Kennedy, R.E.; Standaert, D.G. Image Quantification for TSPO PET with a Novel Image-Derived Input Function Method. Diagnostics 2022, 12, 1161. [Google Scholar] [CrossRef]
- Rinne, J.O.; Hublin, C.; Någren, K.; Helenius, H.; Partinen, M. Unchanged striatal dopamine transporter availability in narcolepsy: A PET study with [11C]-CFT. Acta Neurol. Scand. 2004, 109, 52–55. [Google Scholar] [CrossRef]
- Rabinovici, G.D.; Furst, A.J.; O’Neil, J.P.; Racine, C.A.; Mormino, E.C.; Baker, S.L.; Chetty, S.; Patel, P.; Pagliaro, T.A.; Klunk, W.E.; et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2007, 68, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Zanotti-Fregonara, P.; Zhang, Y.; Jenko, K.J.; Gladding, R.L.; Zoghbi, S.S.; Fujita, M.; Sbardella, G.; Castellano, S.; Taliani, S.; Martini, C.; et al. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem. Neurosci. 2014, 5, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Unterrainer, M.; Mahler, C.; Vomacka, L.; Lindner, S.; Havla, J.; Brendel, M.; Böning, G.; Ertl-Wagner, B.; Kümpfel, T.; Milenkovic, V.M.; et al. TSPO PET with [(18)F]GE-180 sensitively detects focal neuroinflammation in patients with relapsing-remitting multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
Author | Year of Publication | Country | Tracer | Population | Characteristics |
---|---|---|---|---|---|
Ouchi et al. [11] | 2005 | Japan | 11 C-(R)PK11195 | 20 patients | 10 Parkinson’s Disease 10 Healthy subjects |
Kobylecky et al. [12] | 2013 | UK | 11 C-(R)PK11195 | 20 patients | 11 Atypical Parkinsonian syndromes 9 Parkinson’s Disease |
Edison et al. [13] | 2012 | UK | 11 C-(R)PK11195; 11 C-PIB; 18 F-FDG | 19 patients | 19 Parkinson’s Disease |
Iannaccone et al. [14] | 2012 | Italy | 11 C-(R)PK11195 | 12 patients | 6 Parkinson’s Disease 6 Dementia with Levy Bodies |
Gerhard et al. [15] | 2006 | UK | 11 C-(R)PK11195 | 29 patients | 18 Parkinson’s Disease 11 Healthy subjects |
Koshimori et al. [16] | 2015 | Canada | 18 F-FEPPA | 36 patients | 19 Parkinson’s Disease 17 Healthy Subjects |
Ghadery et al. [17] | 2017 | Canada | 18 F-FEPPA | 52 patients | 30 Parkinson’s Disease 22 Healthy subjects |
Ghadery et al. [18] | 2020 | Canada | 18 F-FEPPA; 11 C-PIB | 41 patients | 29 Parkinson’s Disease 12 Healthy subjects |
Jucaite et al. [19] | 2015 | Sweden; Finland | 11 C-PBR28; 18 F-FE-PE21 | 29 patients | 29 Parkinson’s Disease |
Varnas et al. [20] | 2019 | Sweden | 11 C-PBR28 | 32 patients | 16 Parkinson’s Disease 16 Healthy subjects |
Jucaite et al. [21] | 2022 | Sweden | 11 C-PBR28 | 90 patients | 66 Multiple System Atrophy 24 Parkinson’s Disease |
Tarada et al. [22] | 2016 | Japan | 11 C-DPA713 | 11 patients | 11 Parkinson’s Disease |
Fang et al. [23] | 2022 | USA | 18 F-DPA714 | 5 patients | 3 Parkinson’s Disease 2 Healthy subjects |
1. Was There a Clear Question for the Study to Address? | 2. Was There a Comparison with an Appropriate Reference Standard? | 3. Did All Patients Get the Diagnostic Test and Reference Standard? | 4. Could the Results of the Test Have Been Influenced by the Results of the Reference Standard? | 5. Is the Disease Status of the Tested Population Clearly Described? | 6. Were the Methods for Performing the Test Described in Sufficient Detail? | 7. What Are the Results? | 8. How Sure Are We about the Results? Consequences and Cost of Alternatives Performed? | 9. Can the Results Be Applied to Your Patients/the Population of Interest? | 10. Can the Test Be Applied to Your Patient or Population of Interest? | 11. Were All Outcomes Important to the Individual or Population Considered? | 12. What Would Be the Impact of Using This Test on Your Patients/Population? | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ouchi et al. 2005 [11] | ☺ | ☺ | ☺ | ? | ☺ | ☺ | ☺ | ? | ☺ | ☺ | ☺ | It may show patterns of neuroinflammation in patients with PD. |
Kobilecky et al. 2013 [12] | ☺ | ☺ | ☺ | ? | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | It may correlate diffusion-weighted images and PET images in patients with PD. |
Edison et al. 2012 [13] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | Comparison of different radiotracers in PD. |
Iannaccone et al. 2012 [14] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ? | ☺ | ☺ | ☺ | Comparison of neuroinflammation patterns in PD and DLB. |
Gerhard et al. 2006 [15] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | It may explain the self-maintaining process of neuroinflammation over time. |
Koshimori et al. 2015 [16] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ? | ? | ? | ☹ | Differentiates binding potential between HABs and MABs. |
Ghadery et al. 2017 [17] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ? | ? | ? | ☺ | Differentiates binding potential between HABs and MABs and correlate the binding potential with the severity of the disease. |
Ghadery et al. 2020 [18] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ? | ? | ☺ | Studies the relationship between brain β-amyloid and neuroinflammation in patients affected by PD according to their disease severity. |
Jucaite et al. 2015 [19] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | Investigates the effects of MPO inhibition on neuroinflammation |
Varnas et al. 2019 [20] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☹ | ☺ | ☺ | ☹ | Correlates DAT and TSPO expression in patients with PD. |
Jucaite et al. 2022 [21] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | May differentiate between MSA and PD. |
Tarada et al. 2016 [22] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | It may explain patterns of neuroinflammation in early-stage disease. |
Fang et al. 2022 [23] | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ☺ | ? | ? | ? | ? | May provide an image-derived input function method for 18F-DPA-714. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corica, F.; De Feo, M.S.; Gorica, J.; Sidrak, M.M.A.; Conte, M.; Filippi, L.; Schillaci, O.; De Vincentis, G.; Frantellizzi, V. PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside. Diagnostics 2023, 13, 1029. https://doi.org/10.3390/diagnostics13061029
Corica F, De Feo MS, Gorica J, Sidrak MMA, Conte M, Filippi L, Schillaci O, De Vincentis G, Frantellizzi V. PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside. Diagnostics. 2023; 13(6):1029. https://doi.org/10.3390/diagnostics13061029
Chicago/Turabian StyleCorica, Ferdinando, Maria Silvia De Feo, Joana Gorica, Marko Magdi Abdou Sidrak, Miriam Conte, Luca Filippi, Orazio Schillaci, Giuseppe De Vincentis, and Viviana Frantellizzi. 2023. "PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside" Diagnostics 13, no. 6: 1029. https://doi.org/10.3390/diagnostics13061029
APA StyleCorica, F., De Feo, M. S., Gorica, J., Sidrak, M. M. A., Conte, M., Filippi, L., Schillaci, O., De Vincentis, G., & Frantellizzi, V. (2023). PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside. Diagnostics, 13(6), 1029. https://doi.org/10.3390/diagnostics13061029