Fire Characteristics of Selected Tropical Woods without and with Fire Retardant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Test Equipment
2.2.2. Measurement Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Momoh, M.; Horrocks, A.R.; Eboatu, A.N.; Kolawole, E.G. Flammability of tropical woods—I. Investigation of the burning parameters. Polym. Degrad. Stab. 1996, 54, 403–411. [Google Scholar] [CrossRef]
- Elvira-Leon, J.C.; Chimenos, J.M.; Isabal, C.; Monton, J.; Formosa, J.; Haurie, L. Epsomite as flame retardant treatment for wood: Preliminary study. Constr. Build. Mater. 2016, 126, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Cekovska, H.; Gaff, M.; Osvald, A.; Kacik, F.; Kubs, J.; Kaplan, L. Fire resistance of thermally modified spruce wood. BioResources 2017, 12, 947–959. [Google Scholar] [CrossRef]
- Koklukaya, O.; Carosio, F.; Grunlan, J.C.; Wagberg, L. Flame-retardant paper from wood fibers functionalized via layer-by-layer assembly. ACS Appl. Mater. Interfaces 2015, 7, 23750–23759. [Google Scholar] [CrossRef] [PubMed]
- Östman, B.A.-L. Fire performance of wood products and timber structure. Int. Wood Prod. J. 2017, 8, 74–79. [Google Scholar] [CrossRef]
- Jiang, J.; Li, J.; Hu, J.; Fan, F. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Constr. Build. Mater. 2010, 24, 2633–2637. [Google Scholar] [CrossRef]
- Ecochard, Y.; Decostanzi, M.; Negrell, C.; Sonnier, R.; Caillol, S. Cardanol and eugenol based flame retardant epoxy monomers for thermostable networks. Molecules 2019, 24, 1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maqsood, M.; Langensiepen, F.; Seide, G. The efficiency of biobased carbonization agent and intumescent flame retardant on flame retardancy of biopolymer composites and investigation of their melt-spinnability. Molecules 2019, 24, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnier, R.; Dumazert, L.; Livi, S.; Nguyen, T.K.L.; Duchet-Rumeau, J.; Vahabi, H.; Laheurte, P. Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polym. Degrad. Stab. 2016, 134, 186–193. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Ferry, L.; Lopez-Cuesta, J.M. Study of the combustion effiency of polymers using a pyrolysis-combustion flow calorimeter. Combust. Flame 2013, 160, 2182–2193. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, L.; Harries, K.A.; Zhang, F.; Liu, Q.; Feng, J. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Constr. Build. Mater. 2015, 96, 416–427. [Google Scholar] [CrossRef]
- Giraldo, M.P.; Haurie, L.; Sotomayor, J.; Lacasta, A.M.; Monton, J.; Palumbo, M.; Nazzaro, A. Characterization of the fire behaviour of tropical wood species for use in the construction industry. In Proceedings of the WCTE 2016: World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016; Technischen Universität Graz: Graz, Austria; pp. 5387–5395. [Google Scholar]
- Gerad, J.; Guibal, D.; Paradis, S.; Cerre, J.C. Tropical Timber Atlas Technological Characteristics and Uses, 1st ed.; Editions Quæ: Versailles Cedex, France, 2017; pp. 600–602. [Google Scholar]
- Wiemann, M.C. Characteristics and availability of commercially important woods. In Wood Handbook: Wood as an Engineering Material; Forest Products: Madison, WI, USA, 2010; pp. 2.1–2.45. [Google Scholar]
- Cumaru—Specification Sheet. Available online: https://www.dlhwood.sk/wp-content/uploads/2017/01/60510_Tech_list_Cumaru_kor0.pdf (accessed on 13 November 2019).
- Garapa—Specification Sheet. Available online: https://www.dlhwood.sk/wp-content/uploads/2017/01/60510_Tech_list_Garapa_kor0.pdf (accessed on 13 November 2019).
- Ipe—Specification Sheet. Available online: https://www.dlhwood.sk/wp-content/uploads/2017/01/60510_Tech_list_Ipe_kor0-1.pdf (accessed on 13 November 2019).
- Kempas—Spectification Sheet. Available online: https://www.dlhwood.sk/wp-content/uploads/2017/01/60510_Tech_list_Kempas_kor0.pdf (accessed on 13 November 2019).
- Merbau—Specification Sheet. Available online: https://www.dlhwood.sk/wp-content/uploads/2017/01/60510_Tech_list_Merbau_kor0-1.pdf (accessed on 13 November 2019).
- ASTM E1354-17 Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter; ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Cone Calorimeter. Available online: http://polymer.sav.sk/old/index.php (accessed on 22 December 2019).
Name |
---|
FeHPO4 |
Citric acid |
Polyoxyethylene stearyl alcohol |
Water |
The Sample | Density 1 (kg/m3) | Density 2 (kg/m3) |
---|---|---|
Cumaru | 1200 | 1070 |
Garapa | 1050 | 790 |
Ipe | 1300 | 1050 |
Kempas | 1050 | 880 |
The Sample | Cumaru | Garapa | Ipe | Kempas | Merbau |
---|---|---|---|---|---|
The acceptance (g) | 2.4 | 2.5 | 6.5 | 8.4 | 2.6 |
Sample | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
m (g) | mlost (g) | Time to Ignition/Time of Burning (s) | EHC (MJ/kg) | Peak HRR (kW/m2) | TOC (g) | TSR (m2/m2) | MARHE (kW/m2) | % of Carbon Residue | |
Cav | 163.3 | 121.5 | 45 ± 4/1067 ± 30 | 15.6 | 457.2 ± 42.3 | 115.9 | 662.2 | 176.5 ± 5.1 | 25.5 ± 0.3 |
Cfr | 173.2 | 114.4 | 51/1514 | 13.4 | 264.4 | 93.5 | 189.0 | 98.1 | 33.9 |
Gav | 180.0 | 118.5 | 90 ± 10/1439 ± 49 | 13.6 | 275.0 ± 28.2 | 98.4 | 205.7 | 107.4 ± 6.3 | 34.2 ± 0.5 |
Gfr | 189.8 | 166.0 | 65/1731 | 15.9 | 342.5 | 161.0 | 923.0 | 148.6 | 24.5 |
Kav | 139.9 | 112.7 | 37 ± 2/1200 ± 34 | 17.1 | 307.8 ± 9.8 | 115.8 | 385.8 | 155.6 ± 7.4 | 20.6 ± 1.7 |
Kfr | 138.7 | 105.7 | 42/1237 | 17.5 | 268.1 | 112.8 | 426.8 | 145.0 | 23.8 |
Mav | 253.3 | 183.0 | 91 ± 16/1676 ± 50 | 17.4 | 438.4 ± 32.8 | 194.8 | 1468.8 | 187.9 ± 8.4 | 27.7 ± 1.2 |
Mfr | 253.7 | 183.4 | 54/1565 | 17.1 | 357.6 | 191.6 | 1924.1 | 170.1 | 27.7 |
Iav | 227.0 | 171.9 | 89 ± 5/1340+-64 | 16.9 | 500.9 ± 17.9 | 177.6 | 1678.8 | 224.6 ± 8.6 | 24.4 ± 0.4 |
Ifr | 230.6 | 170.2 | 98/1413 | 15.8 | 452.6 | 164.7 | 1745.9 | 187.8 | 26.2 |
Sample | Some Parameters from Cone Calorimeter after the Burning of Selected Samples | ||||||
---|---|---|---|---|---|---|---|
Density (kg/m3) | Initial Mass (g) | Time to Ignition (s) | EHC (MJ/kg) | TOC (g) | Peak HRR (kW/m2) | Carbon Residue (%) | |
Spruce Fir | 561 | 55.02 | 47 | 15.2 | 41.6 | 227.0 | 17.2 |
553 | 53.17 | 51 | 14.3 | 37.2 | 232.7 | 17.9 | |
445 | 43.64 | 47 | 14.4 | 31.7 | 234.9 | 15.1 | |
458 | 44.45 | 41 | 14.4 | 32.5 | 218.5 | – | |
385 | 37.37 | 31 | 15.3 | 30.1 | 224.2 | 12.6 | |
392 | 38.06 | 36 | 15.3 | 29.9 | 241.0 | 13.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makovicka Osvaldova, L.; Kadlicova, P.; Rychly, J. Fire Characteristics of Selected Tropical Woods without and with Fire Retardant. Coatings 2020, 10, 527. https://doi.org/10.3390/coatings10060527
Makovicka Osvaldova L, Kadlicova P, Rychly J. Fire Characteristics of Selected Tropical Woods without and with Fire Retardant. Coatings. 2020; 10(6):527. https://doi.org/10.3390/coatings10060527
Chicago/Turabian StyleMakovicka Osvaldova, Linda, Patricia Kadlicova, and Jozef Rychly. 2020. "Fire Characteristics of Selected Tropical Woods without and with Fire Retardant" Coatings 10, no. 6: 527. https://doi.org/10.3390/coatings10060527
APA StyleMakovicka Osvaldova, L., Kadlicova, P., & Rychly, J. (2020). Fire Characteristics of Selected Tropical Woods without and with Fire Retardant. Coatings, 10(6), 527. https://doi.org/10.3390/coatings10060527