Evaluating Evidence Reliability on the Basis of Intuitionistic Fuzzy Sets
Abstract
1. Introduction
2. Brief Review on Evidence Theory
2.1. Basic Concepts
2.2. Dempster’s Combination Rule
3. Evaluating the Evidence Reliability
3.1. The Relation between BPA and IFS
- (R1)
- iff;
- (R2)
- iff;
- (R3)
- , whereis the complement of.
3.2. Supporting Degree of BPAs
3.3. Evidence Reliability
3.4. A New Method for Evidence Combination
4. Illustrative Examples and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Wang, Y.; Shi, H.; Zhang, M.; Lin, Y. Evidential reasoning with discrete belief structures. Inf. Fusion 2018, 41, 91–104. [Google Scholar] [CrossRef]
- Friedberg, I.; Hong, X.; Mclaughlin, K.; Smith, P.; Miller, P.C. Evidential Network Modeling for Cyber-Physical System State Inference. IEEE Access 2017, 5, 17149–17164. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Pal, N.R.; Marathe, A.R.; Lin, C.-T. Weighted Fuzzy Dempster–Shafer Framework for Multimodal Information Integration. IEEE Trans. Fuzzy Syst. 2018, 26, 338–352. [Google Scholar] [CrossRef]
- Liu, Z.; Pan, Q.; Dezert, J.; Han, J.; He, Y. Classifier fusion with contextual reliability evaluation. IEEE Trans. Cybern. 2018, 48, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhou, Z.; Hu, C.; Chang, L.; Zhou, Z.; Zhao, F. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base. Saf. Sci. 2017, 93, 108–120. [Google Scholar] [CrossRef]
- Zhou, Z.; Chang, L.; Hu, C.; Han, X.; Zhou, Z. A new BRB-ER-based model for assessing the lives of products using both failure data and expert knowledge. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 1529–1543. [Google Scholar] [CrossRef]
- Sotirov, S.; Sotirova, E.; Atanassova, V.; Atanassov, K.; Castillo, O.; Melin, P.; Petkov, T.; Surchev, S. A Hybrid Approach for Modular Neural Network Design Using Intercriteria Analysis and Intuitionistic Fuzzy Logic. Complexity 2018, 2018, 3927951. [Google Scholar] [CrossRef]
- Sotirov, S.; Sotirova, E.; Melin, P.; Castilo, O.; Atanassov, K. Modular Neural Network Preprocessing Procedure with Intuitionistic Fuzzy Intercriteria Analysis Method. In Proceedings of the 11th International Conference on Flexible Query Answering Systems (FQAS), Cracow, Poland, 26–28 October 2015. [Google Scholar]
- Castillo, O.; Melin, P.; Tsvetkov, R.; Atanassov, K.T. Short Remark on Fuzzy Sets, Interval Type-2 Fuzzy Sets, General Type-2 Fuzzy Sets and Intuitionistic Fuzzy Sets. In Proceedings of the 7th IEEE International Conference on Intelligent Systems (IEEE IS), Warsaw, Poland, 24–26 September 2014. [Google Scholar]
- Garg, H.; Kumar, K. Improved possibility degree method for ranking intuitionistic fuzzy numbers and their application in multiattribute decision making. Granul. Comput. 2018, 1–11. [Google Scholar] [CrossRef]
- Niwas, R.; Garg, H. An approach for analyzing the reliability and profit of an industrial system based on the cost free warranty policy. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 265. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Quan, W.; Huang, W. A new approach to construct similarity measure for intuitionistic fuzzy sets. Soft Comput. 2017, 1–14. [Google Scholar] [CrossRef]
- Ngan, R.T.; Cuong, B.C.; Ali, M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl. Soft Comput. 2018, 69, 393–425. [Google Scholar] [CrossRef]
- Hwang, C.M.; Yang, M.S.; Hung, W.L. New similarity measures of intuitionistic fuzzy sets based on the Jaccard index with its application to clustering. Int. J. Intell. Syst. 2018, 33, 1672–1688. [Google Scholar] [CrossRef]
- Garg, H.; Kumar, K. An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Comput. 2018, 22, 4959–4970. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Lei, L.; Quan, W.; Huang, W. An evidential view of similarity measure for Atanassov’s intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 2016, 31, 1653–1668. [Google Scholar] [CrossRef]
- Garg, H.; Kumar, K. Distance measures for connection number sets based on set pair analysis and its applications to decision-making process. Appl. Intell. 2018, 48, 3346–3359. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Distance and similarity measures for dual hesitant fuzzy soft sets and their applications in multi-criteria decision making problem. Int. J. Uncertain. Quantif. 2017, 7, 229–248. [Google Scholar] [CrossRef]
- Garg, H. A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Appl. Soft Comput. 2016, 38, 989–999. [Google Scholar] [CrossRef]
- Fan, C.; Song, Y.; Fu, Q.; Lei, L.; Wang, X. New operators for aggregating intuitionistic fuzzy information with their application in decision making. IEEE Access 2018, 6, 27214–27238. [Google Scholar] [CrossRef]
- Garg, H.; Singh, S. A novel triangular interval type-2 intuitionistic fuzzy set and their aggregation operators. Iran. J. Fuzzy Syst. 2018, 15, 69–93. [Google Scholar] [CrossRef]
- Jamkhaneh, E.B.; Garg, H. Some new operations over the generalized intuitionistic fuzzy sets and their application to decision-making process. Granul. Comput. 2018, 3, 111–122. [Google Scholar] [CrossRef]
- Garg, H. Performance analysis of an industrial systems using soft computing based hybridized technique. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 1441–1451. [Google Scholar] [CrossRef]
- Garg, H. An approach for analyzing the reliability of industrial system using fuzzy Kolmogorov’s differential equations. Arab. J. Sci. Eng. 2015, 40, 975–987. [Google Scholar] [CrossRef]
- Garg, H.; Rani, M.; Sharma, S.P.; Vishwakarma, Y. Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment. Expert Syst. Appl. 2014, 41, 3157–3167. [Google Scholar] [CrossRef]
- Islam, S.; Kundu, T. A Generalized Intuitionistic Fuzzy Optimization Approach on Entropy based Multi-Objective Reliability Optimization Model. Fuzzy Syst. 2018, 10, 92–98. [Google Scholar]
- Wang, X.; Song, Y. Uncertainty measure in evidence theory with its applications. Appl. Intell. 2018, 48, 1672–1688. [Google Scholar] [CrossRef]
- Fan, C.; Song, Y.; Lei, L.; Wang, X.; Bai, S. Evidence reasoning for temporal uncertain information based on relative reliability evaluation. Exp. Syst. Appl. 2018, 113, 264–276. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Zhu, J.; Lei, L. Sensor dynamic reliability evaluation based on evidence and intuitionistic fuzzy sets. Appl. Intell. 2018, 48, 3950–3962. [Google Scholar] [CrossRef]
- Elouedi, Z.; Mellouli, K.; Smets, P. Assessing Sensor Reliability for Multisensor Data Fusion Within the Transferable Belief Model. IEEE Trans. Syst. Manand Cybern. Part B Cybern. 2004, 34, 782–787. [Google Scholar] [CrossRef]
- Guo, H.; Shi, W.; Deng, Y. Evaluating Sensor Reliability in Classification Problems Based on Evidence Theory. IEEE Trans. Syst. Manand Cybern. Part B Cybern. 2006, 36, 970–981. [Google Scholar] [CrossRef]
- Klein, J.; Colot, O. Automatic discounting rate computation using a dissent criterion. In Proceedings of the Workshop on the Theory of Belief Functions, Brest, France, 31 March 2010; pp. 1–6. [Google Scholar]
- Jousselme, A.-L.; Grenier, D.; Bosse, E. A new distance between two bodies of evidence. Inf. Fusion 2001, 2, 91–101. [Google Scholar] [CrossRef]
- Liu, Z.; Dezert, J.; Pan, Q.; Mercier, G. Combination of sources of evidence with different discounting factors based on a new dissimilarity measure. Decis. Support Syst. 2011, 52, 133–141. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and lower probabilities induced by a multiple valued mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Smets, P. Data fusion in the transferable belief model. In Proceedings of the 3rd International Conference on Information Fusion, Paris, France, 10 July 2000; pp. PS21–PS33. [Google Scholar]
- Zadeh, L.A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Mag. 1986, 2, 85–90. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Deng, Y.G.; Shi, W.K.; Zhu, Z.F.; Liu, Q. Combining belief functions based on distance of evidence. Decis. Support Syst. 2004, 38, 489–493. [Google Scholar]
m1 | m2 | m3 | m4 | m5 | |
---|---|---|---|---|---|
{θ1} | 0.8 | 0.4 | 0 | 0.3 | 0.45 |
{θ2} | 0.1 | 0.2 | 0.95 | 0.2 | 0.1 |
{θ3} | 0 | 0.1 | 0.05 | 0.25 | 0 |
{θ1, θ2} | 0 | 0.3 | 0 | 0.2 | 0 |
{θ2, θ3} | 0 | 0 | 0 | 0 | 0.15 |
Θ | 0.1 | 0 | 0 | 0.05 | 0.3 |
Classical Dempster’s rule | m({θ1}) = 0.8451 m({θ2}) = 0.0986 m({θ3}) = 0.0140 m({θ1,θ2}) = 0.0423 | m({θ1}) = 0 m({θ2}) = 0.9948 m({θ3}) = 0.0052 | m({θ1}) = 0 m({θ2}) = 0.9965 m({θ3}) = 0.0035 | m({θ1}) = 0 m({θ2}) = 0.9971 m({θ3}) = 0.0029 |
dJ & Dempster’s rule [41] | m({θ1}) = 0.7659 m({θ2}) = 0.1166 m({θ3}) = 0.0294 m({θ1,θ2}) = 0.0881 | m({θ1}) = 0.6239 m({θ2}) = 0.2791 m({θ3}) = 0.0252 m({θ1,θ2}) = 0.0718 | m({θ1}) = 0.6858 m({θ2}) = 0.2645 m({θ3}) = 0.0146 m({θ1,θ2}) = 0.0351 | m({θ1}) = 0.7528 m({θ2}) = 0.2217 m({θ3}) = 0.0096 m({θ1,θ2}) = 0.0159 |
Liu’s method in [34] | m({θ1}) = 0.7503 m({θ2}) = 0.1196 m({θ3}) = 0.0319 m({θ1,θ2}) = 0.0957 m(Θ) = 0.0025 | m({θ1}) = 0.7157 m({θ2}) = 0.1598 m({θ3}) = 0.0308 m({θ1,θ2}) = 0.0913 m(Θ) = 0.0024 | m({θ1}) = 0.7670 m({θ2}) = 0.11655 m({θ3}) = 0.0194 m({θ1,θ2}) = 0.0477 m(Θ) = 0.0004 | m({θ1}) = 0.8254 m({θ2}) = 0.1424 m({θ3}) = 0.0120 m({θ1,θ2}) = 0.0198 m({θ2,θ3}) = 0.0002 m(Θ) = 0.0002 |
Proposed method | m({θ1}) = 0.8451 m({θ2}) = 0.0986 m({θ3}) = 0.0141 m({θ1,θ2}) = 0.0423 m(Θ) = 0.0011 | m({θ1}) = 0.5317 m({θ2}) = 0.4070 m({θ3}) = 0.0170 m({θ1,θ2}) = 0.0443 | m({θ1}) = 0.5969 m({θ2}) = 0.3596 m({θ3}) = 0.0137 m({θ1,θ2}) = 0.0296 m(Θ) = 0.0002 | m({θ1}) = 0.6923 m({θ2}) = 0.2832 m({θ3}) = 0.0100 m({θ1,θ2}) = 0.0142 m(Θ) = 0.0002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Song, Y.; Zhao, W. Evaluating Evidence Reliability on the Basis of Intuitionistic Fuzzy Sets. Information 2018, 9, 298. https://doi.org/10.3390/info9120298
Wu W, Song Y, Zhao W. Evaluating Evidence Reliability on the Basis of Intuitionistic Fuzzy Sets. Information. 2018; 9(12):298. https://doi.org/10.3390/info9120298
Chicago/Turabian StyleWu, Wenhua, Yafei Song, and Weiwei Zhao. 2018. "Evaluating Evidence Reliability on the Basis of Intuitionistic Fuzzy Sets" Information 9, no. 12: 298. https://doi.org/10.3390/info9120298
APA StyleWu, W., Song, Y., & Zhao, W. (2018). Evaluating Evidence Reliability on the Basis of Intuitionistic Fuzzy Sets. Information, 9(12), 298. https://doi.org/10.3390/info9120298