Prediction of Cyanotoxin Episodes in Freshwater: A Case Study on Microcystin and Saxitoxin in the Lobo Reservoir, São Paulo State, Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites and Sampling
2.2. Physicochemical Variables
2.3. Microscopic Identification and Enumeration
2.4. DNA Extraction and Quantitative Real-Time PCR
2.5. Cyanotoxin Analyses
2.6. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Phytoplankton Community
3.3. Abundance of mcyE and sxtA Genes and Toxin Concentrations
3.4. Relationship between Environmental Variables, Cyanobacteria and Cyanotoxins
4. Discussion
4.1. Cyanobacteria and Cyanotoxins in the Reservoir
4.2. Environmental Variables and Cyanotoxins
4.3. Monitoring of Toxic Cyanobacteria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paerl, H.W. Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures. Toxins 2018, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, S.; Karnjanapiboonwong, A.; Maul, J.D.; Wang, D.; Anderson, T.A. Monitoring Cyanobacterial Toxins in a Large Reservoir: Relationships with Water Quality Parameters. PeerJ 2019, 2019, e7305. [Google Scholar] [CrossRef] [PubMed]
- Rinta-Kanto, J.M.; Konopko, E.A.; DeBruyn, J.M.; Bourbonniere, R.A.; Boyer, G.L.; Wilhelm, S.W. Lake Erie Microcystis: Relationship between Microcystin Production, Dynamics of Genotypes and Environmental Parameters in a Large Lake. Harmful Algae 2009, 8, 665–673. [Google Scholar] [CrossRef]
- Lee, T.A.; Rollwagen-Bollens, G.; Bollens, S.M.; Faber-Hammond, J.J. Environmental Influence on Cyanobacteria Abundance and Microcystin Toxin Production in a Shallow Temperate Lake. Ecotoxicol. Environ. Saf. 2015, 114, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.R.; dos Santos, P.V.; Bottino, F.; Calijuri, M.D.C. Effect of Nutrient Concentration on Growth and Saxitoxin Production of Raphidiopsis raciborskii (Cyanophyta) Interacting with Monoraphidium contortum (Chlorophyceae). J. Appl. Phycol. 2019, 32, 421–430. [Google Scholar] [CrossRef]
- Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The Effects of Temperature and Nutrients on the Growth and Dynamics of Toxic and Non-Toxic Strains of Microcystis during Cyanobacteria Blooms. Harmful Algae 2009, 8, 715–725. [Google Scholar] [CrossRef]
- Cirés, S.; Delgado, A.; González-Pleiter, M.; Quesada, A. Temperature Influences the Production and Transport of Saxitoxin and the Expression of Sxt Genes in the Cyanobacterium Aphanizomenon gracile. Toxins 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Renaud, S.L.B.; Pick, F.R.; Fortin, N. Effect of Light Intensity on the Relative Dominance of Toxigenic and Nontoxigenic Strains of Microcystis aeruginosa. Appl. Environ. Microbiol. 2011, 77, 7016–7022. [Google Scholar] [CrossRef] [Green Version]
- Long, S.; Hamilton, P.B.; Yang, Y.; Ma, J.; Chobet, O.C.; Chen, C.; Liu, Z.; Dong, X.; Dang, A.; Chen, J. Multi-Year Succession of Cyanobacteria Blooms in a Highland Reservoir with Changing Nutrient Status, Guizhou Province, China. J. Limnol. 2018, 77, 232–246. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huo, S.; Zhang, J.; Xiao, Z.; Xi, B.; Li, R. Factors Related to Aggravated Cylindrospermopsis (Cyanobacteria) Bloom Following Sediment Dredging in an Eutrophic Shallow Lake. Environ. Sci. Ecotechnol. 2020, 2, 100014. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, X.; Peijnenburg, W.J.G.M.; Zhang, M.; Sun, L.; Zhai, Y.; Yu, Q.; Wu, J.; Lu, T.; Qian, H. Alteration of Dominant Cyanobacteria in Different Bloom Periods Caused by Abiotic Factors and Species Interactions. J. Environ. Sci. 2021, 99, 1–9. [Google Scholar] [CrossRef]
- Fortin, N.; Aranda-Rodriguez, R.; Jing, H.; Pick, F.; Bird, D.; Greer, C.W. Detection of Microcystin-Producing Cyanobacteria in Missisquoi Bay, Quebec, Canada, Using Quantitative PCR. Appl. Environ. Microbiol. 2010, 76, 5105–5112. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lv, H.; Yang, J.; Liu, L.; Yu, X.; Chen, H. Decline in Water Level Boosts Cyanobacteria Dominance in Subtropical Reservoirs. Sci. Total Environ. 2016, 557–558, 445–452. [Google Scholar] [CrossRef]
- Kosten, S.; Huszar, V.L.M.; Bécares, E.; Costa, L.S.; Van Donk, E.; Hansson, L.-A.; Jeppesen, E.; Kruk, C.; Lacerot, G.; Mazzeo, N.; et al. Warmer Climates Boost Cyanobacterial Dominance in Shallow Lakes. Glob. Chang. Biol. 2012, 18, 118–126. [Google Scholar] [CrossRef]
- Gkelis, S.; Papadimitriou, T.; Zaoutsos, N.; Leonardos, I. Anthropogenic and Climate-Induced Change Favors Toxic Cyanobacteria Blooms: Evidence from Monitoring a Highly Eutrophic, Urban Mediterranean Lake. Harmful Algae 2014, 39, 322–333. [Google Scholar] [CrossRef]
- Rigosi, A.; Carey, C.C.; Ibelings, B.W.; Brookes, J.D. The Interaction between Climate Warming and Eutrophication to Promote Cyanobacteria Is Dependent on Trophic State and Varies among Taxa. Limnol. Oceanogr. 2014, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of Knowledge and Concerns on Cyanobacterial Blooms and Cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef]
- Tillett, D.; Dittmann, E.; Erhard, M.; Von Do, H.; Bo, T.; Neilan, B.A. Structural Organization of Microcystin Biosynthesis in Microcystis aeruginosa PCC7806: An Integrated Peptide-Polyketide Synthetase System. Chem. Biol. 2000, 7, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Rouhiainen, L.; Vakkilainen, T.; Siemer, B.L.; Buikema, W.; Haselkorn, R.; Sivonen, K. Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90. Appl. Environ. Microbiol. 2004, 70, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellmann, R.; Mihali, T.K.; Young, J.J.; Pickford, R.; Pomati, F.; Neilan, B.A. Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria. Appl. Environ. Microbiol. 2008, 74, 4044–4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihali, T.K.; Kellmann, R.; Neilan, B.A. Characterisation of the Paralytic Shellfish Toxin Biosynthesis Gene Clusters in Anabaena circinalis AWQC131C and Aphanizomenon Sp. NH-5. BMC Biochem. 2009, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, A.B.F.; Guedes, I.A.; Azevedo, S.M.F.O. Is QPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater? Toxins 2016, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Al-Tebrineh, J.; Mihali, T.K.; Pomati, F.; Neilan, B.A. Detection of Saxitoxin-Producing Cyanobacteria and Anabaena circinalis in Environmental Water Blooms by Quantitative PCR. Appl. Environ. Microbiol. 2010, 76, 7836–7842. [Google Scholar] [CrossRef] [Green Version]
- Al-Tebrineh, J.; Merrick, C.; Ryan, D.; Humpage, A.; Bowling, L.; Neilan, B.A. Community Composition, Toxigenicity, and Environmental Conditions during a Cyanobacterial Bloom Occurring along 1,100 Kilometers of the Murray River. Appl. Environ. Microbiol. 2012, 78, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Ngwa, F.F.; Madramootoo, C.A.; Jabaji, S. Comparison of Cyanobacterial Microcystin Synthetase (mcy) E Gene Transcript Levels, mcy E Gene Copies, and Biomass as Indicators of Microcystin Risk under Laboratory and Field Conditions. Microbiologyopen 2014, 3, 411–425. [Google Scholar] [CrossRef]
- Periotto, N.A.; Tundisi, J.G. Ecosystem Services of UHE Carlos Botelho (Lobo/Broa): A New Approach for Management and Planning of Dams Multiple-Uses. Braz. J. Biol. 2013, 73, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, A.; Gómez, E.B.; Kaštovský, J.; Echenique, R.O.; Salerno, G.L. The Polyphasic Analysis of Two Native Raphidiopsis Isolates Supports the Unification of the Genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 2018, 57, 130–146. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Matsumura-Tundisi, T.; Tundisi, J.E.M.; Blanco, F.P.; Abe, D.S.; Contri Campanelli, L.; Sidagis Galli, G.; Silva, V.T.; Lima, C.P.P. A Bloom of Cyanobacteria (Cylindrospermopsis raciborskii) in UHE Carlos Botelho (Lobo/Broa) Reservoir: A Consequence of Global Change? Braz. J. Biol. 2015, 75, 507–508. [Google Scholar] [CrossRef] [Green Version]
- Vicentin, A.M.; Rodrigues, E.H.C.; Moschini-Carlos, V.; Pompêo, M.L.M. Is It Possible to Evaluate the Ecological Status of a Reservoir Using the Phytoplankton Community? Acta Limnol. Bras. 2018, 30, e306. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.H.C.; Vicentin, A.M.; Machado, L.d.S.; Pompêo, M.L.M.; Moschini-Carlos, V. Phytoplankton, Trophic State and Ecological Potential in Reservoirs in the State of São Paulo, Brazil. Rev. Ambiente Agua 2019, 14, e2428. [Google Scholar] [CrossRef]
- Nusch, E.A. Comparison of Different Methods for Chlorophyll and Pheopigment Determination. Arch. Hydrobiol. 1980, 14, 14–36. [Google Scholar]
- APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 25th ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Washington, DC, USA; Water Pollution Control Federation: Washington, DC, USA, 2005. [Google Scholar]
- Cunha, D.G.F.; Calijuri, M.d.C.; Lamparelli, M.C. A Trophic State Index for Tropical/Subtropical Reservoirs (TSItsr). Ecol. Eng. 2013, 60, 126–134. [Google Scholar] [CrossRef]
- Utermöhl, H. Zur Vervollkommnung Der Quantitativen Phytoplankton-Methodik. Int. Ver. Theor. Angew. Limnol. Mitteilungen 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota 1. Chroococcales. In Süsswasserflora von Mitteleuropa 19/1; Ettl, H., Gärtner, G., Heynig, H., Mollenhauer, D., Eds.; Gustav Fischer, Jena-Stuttgart Lübeck-Ulm: Berlin, Germany, 1998. [Google Scholar]
- Wehr, J.; Sheath, R.G. Freshwater Algae of North America: Ecology and Classification; Academic Press: Cambridge, UK, 2003. [Google Scholar]
- Sant’Anna, C.L.; Azevedo, M.T.P.; Senna, P.A.C.; Komárek, J.; Komárková, J. Planktic Cyanobacteria from São Paulo State, Brazil: Chroococcales. Rev. Bras. Botânica 2004, 27, 213–227. [Google Scholar] [CrossRef]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota. 2. Oscillatoriales. In Süsswasserflora von Mitteleuropa 19/2; Büdel, B., Krienitz, L., Gärtner, G., Schagerl, M., Eds.; Elsevier/Spektrum: Heidelberg, Germany, 2005. [Google Scholar]
- Komárek, J. Cyanoprokaryota. 3. Heterocytous Genera. In Süswasserflora von Mitteleuropa/Freshwater Flora of Central Europe; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bicudo, C.E.M.; Menezes, M. Gêneros de Algas de Águas Continentais Do Brasil: Chave Para Identificação e Descrições; RiMa Editoras: São Carlos, Brazil, 2017. [Google Scholar]
- Hillebrand, H.; Dürselen, C.D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume Calculation for Pelagic and Benthic Microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Sun, J.; Liu, D. Geometric Models for Calculating Cell Biovolume and Surface Area for Phytoplankton. J. Plankton Res. 2003, 25, 1331–1346. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G.; Likens, G.E. Composition and Biomass of Phytoplankton. In Limnological Analyses; Wetzel, R.G., Likens, G.E., Eds.; Springer: New York, NY, USA, 2000; pp. 147–174. [Google Scholar]
- Desjardins, P.; Conklin, D. NanoDrop Microvolume Quantitation of Nucleic Acids. J. Vis. Exp. 2010, 45, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Moraes, M.A.B.; Rodrigues, R.A.M.; Schlüter, L.; Podduturi, R.; Jørgensen, N.O.G.; Calijuri, M.C. Influence of Environmental Factors on Occurrence of Cyanobacteria and Abundance of Saxitoxin-Producing Cyanobacteria in a Subtropical Drinking Water Reservoir in Brazil. Water 2021, 13, 1716. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Pearson, L.; Mihali, T.; Moffitt, M.; Kellmann, R.; Neilan, B. On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin. Mar. Drugs 2010, 8, 1650–1680. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Borges, H.L.F.; Branco, L.H.Z.; Martins, M.D.; Lima, C.S.; Barbosa, P.T.; Lira, G.A.S.T.; Bittencourt-Oliveira, M.C.; Molica, R.J.R. Cyanotoxin Production and Phylogeny of Benthic Cyanobacterial Strains Isolated from the Northeast of Brazil. Harmful Algae 2015, 43, 46–57. [Google Scholar] [CrossRef]
- Barboza, G.; Gorlach-Lira, K.; Sassi, C.; Sassi, R. Microcystins Production and Antibacterial Activity of Cyanobacterial Strains of Synechocystis, Synechococcus and Romeria Isolated from Water and Coral Reef Organisms of Brazilian Coast. Rev. Biol. Trop. 2017, 65, 890. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, R.; Azevedo, J.; Luz, R.; Vasconcelos, V.; Gonçalves, V.; Fonseca, A. Cyanotoxin Screening in BACA Culture Collection: Identification of New Cylindrospermopsin Producing Cyanobacteria. Toxins 2021, 13, 258. [Google Scholar] [CrossRef]
- Ministério da Saúde do Brasil. Portaria MS 2914 de 12 de Dezembro de 2011. Dispõe Sobre Os Procedimentos de Controle e de Vigilância Da Qualidade Da Água Para Consumo Humano e Seu Padrão de Potabilidade; Ministério da Saúde do Brasil: Brasília, Brasil, 2011; 38p. [Google Scholar]
- Brandenburg, K.; Siebers, L.; Keuskamp, J.; Jephcott, T.G.; van de Waal, D.B. Effects of Nutrient Limitation on the Synthesis of N-Rich Phytoplankton Toxins: A Meta-Analysis. Toxins 2020, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Ginn, H.P.; Pearson, L.A.; Neilan, B.A. NtcA from Microcystis aeruginosa PCC 7806 Is Autoregulatory and Binds to the Microcystin Promoter. Appl. Environ. Microbiol. 2010, 76, 4362–4368. [Google Scholar] [CrossRef] [Green Version]
- Dias, E.; Pereira, P.; Franca, S. Production of Paralytic Shellfish Toxins by Aphanizomenon Sp. LMECYA 31 (Cyanobacteria) 1. J. Phycol. 2002, 38, 705–712. [Google Scholar] [CrossRef]
- Casero, M.C.; Ballot, A.; Agha, R.; Quesada, A.; Cirés, S. Characterization of Saxitoxin Production and Release and Phylogeny of sxt Genes in Paralytic Shellfish Poisoning Toxin-Producing Aphanizomenon gracile. Harmful Algae 2014, 37, 28–37. [Google Scholar] [CrossRef]
- Chislock, M.F.; Sharp, K.L.; Wilson, A.E. Cylindrospermopsis raciborskii Dominates under Very Low and High Nitrogen-to-Phosphorus Ratios. Water Res. 2014, 49, 207–214. [Google Scholar] [CrossRef]
- Tao, M.; Xie, P.; Chen, J.; Qin, B.; Zhang, D.; Niu, Y.; Zhang, M.; Wang, Q.; Wu, L. Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu. PLoS ONE 2012, 7, e32020. [Google Scholar] [CrossRef]
- Lahti, K.; Rapala, J.; Färdig, M.; Niemelä, M.; Sivonen, K. Persistence of Cyanobacterial Hepatoxin, Microcystin-LR in Particulate Material and Dissolved in Lake Water. Wat. Res. 1997, 31, 1005–1012. [Google Scholar] [CrossRef]
- Zastepa, A.; Pick, F.R.; Blais, J.M. Fate and Persistence of Particulate and Dissolved Microcystin-LA from Microcystis Blooms. Hum. Ecol. Risk Assess. 2014, 20, 1670–1686. [Google Scholar] [CrossRef]
- Nimptsch, J.; Woelfl, S.; Osorio, S.; Valenzuela, J.; Moreira, C.; Ramos, V.; Castelo-Branco, R.; Leão, P.N.; Vasconcelos, V. First Record of Toxins Associated with Cyanobacterial Blooms in Oligotrophic North Patagonian Lakes of Chile—A Genomic Approach. Int. Rev. Hydrobiol. 2016, 101, 57–68. [Google Scholar] [CrossRef]
- Savela, H.; Spoof, L.; Perälä, N.; Preede, M.; Lamminmäki, U.; Nybom, S.; Häggqvist, K.; Meriluoto, J.; Vehniäinen, M. Detection of Cyanobacterial sxt Genes and Paralytic Shellfish Toxins in Freshwater Lakes and Brackish Waters on Åland Islands, Finland. Harmful Algae 2015, 46, 1–10. [Google Scholar] [CrossRef]
- Oh, K.H.; Jeong, D.H.; Cho, Y.C. Quantification of Toxigenic Microcystis Spp. in Freshwaters by Quantitative Real-Time PCR Based on the Microcystin Synthetase a Gene. J. Microbiol. 2013, 51, 18–24. [Google Scholar] [CrossRef]
- Guedes, I.A.; da Costa Leite, D.M.; Manhães, L.A.; Bisch, P.M.; Azevedo, S.M.F.O.; Pacheco, A.B.F. Fluctuations in Microcystin Concentrations, Potentially Toxic Microcystis and Genotype Diversity in a Cyanobacterial Community from a Tropical Reservoir. Harmful Algae 2014, 39, 303–309. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, R.C.; Murray, S.A.; Chen, J.H.; Kang, Z.J.; Zhang, Q.C.; Kong, F.Z.; Zhou, M.J. High Specificity of a Quantitative PCR Assay Targeting a Saxitoxin Gene for Monitoring Toxic Algae Associated with Paralytic Shellfish Toxins in the Yellow Sea. Appl. Environ. Microbiol. 2015, 81, 6973–6981. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Feng, M.; Liu, F.; Xu, X.; Ke, F.; Chen, X.; Li, W. The Establishment of Preliminary Safety Threshold Values for Cyanobacteria Based on Periodic Variations in Different Microcystin Congeners in Lake Chaohu, China. Environ. Sci. Process. Impacts 2015, 17, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.G.F.; Dodds, W.K.; Loiselle, S.A. Factors Related to Water Quality and Thresholds for Microcystin Concentrations in Subtropical Brazilian Reservoirs. Inland Waters 2018, 8, 368–380. [Google Scholar] [CrossRef]
- Falconer, I.; Bartram, J.; Chorus, I.; Kuiper-Goodman, T.; Utkilen, H.; Burch, M.; Codd, G.A. Safe Levels and Safe Practices. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; E & FN Spon: London, UK, 1999; pp. 162–183. [Google Scholar]
EC | NO2−-N | TP | SRP | Chl a | MC | mcyE | STX | sxtA | |
---|---|---|---|---|---|---|---|---|---|
Cyanobacterial biomass | −0.59 | −0.53 | −0.55 | −0.08 | 0.27 | 0.32 | 0.49 | 0.55 | 0.69 |
MC | −0.11 | −0.62 | −0.36 | 0.33 | 0.71 | - | 0.75 | - | - |
mcyE | −0.62 | −0.51 | −0.65 | 0.14 | 0.75 | 0.75 | - | - | - |
STX | −0.13 | −0.37 | −0.27 | 0.51 | 0.20 | - | - | - | 0.78 |
sxtA | −0.40 | −0.52 | −0.36 | 0.28 | 0.21 | - | - | 0.78 | - |
Variables | Microcystin | Saxitoxin | ||
---|---|---|---|---|
R2 Adj | p Value | R2 Adj | p Value | |
Chlorophyll a | 0.80 | < 0.001 | - | - |
mcyE | 0.86 | < 0.001 | - | - |
Cyanobacterial biomass | - | - | 0.23 | 0.04 |
sxtA | - | - | 0.68 | < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, M.d.A.B.; Rodrigues, R.d.A.M.; Podduturi, R.; Jørgensen, N.O.G.; Calijuri, M.d.C. Prediction of Cyanotoxin Episodes in Freshwater: A Case Study on Microcystin and Saxitoxin in the Lobo Reservoir, São Paulo State, Brazil. Environments 2023, 10, 143. https://doi.org/10.3390/environments10080143
Moraes MdAB, Rodrigues RdAM, Podduturi R, Jørgensen NOG, Calijuri MdC. Prediction of Cyanotoxin Episodes in Freshwater: A Case Study on Microcystin and Saxitoxin in the Lobo Reservoir, São Paulo State, Brazil. Environments. 2023; 10(8):143. https://doi.org/10.3390/environments10080143
Chicago/Turabian StyleMoraes, Munique de Almeida Bispo, Raphaella de Abreu Magalhães Rodrigues, Raju Podduturi, Niels Ole Gerslev Jørgensen, and Maria do Carmo Calijuri. 2023. "Prediction of Cyanotoxin Episodes in Freshwater: A Case Study on Microcystin and Saxitoxin in the Lobo Reservoir, São Paulo State, Brazil" Environments 10, no. 8: 143. https://doi.org/10.3390/environments10080143