Next Article in Journal
Synthesis, Characterization, and Cytotoxicity of a Novel Gold(III) Complex with O,O′-Diethyl Ester of Ethylenediamine-N,N′-Di-2-(4-Methyl)Pentanoic Acid
Previous Article in Journal
Utilization of a Porous Cu Interlayer for the Enhancement of Pb-Free Sn-3.0Ag-0.5Cu Solder Joint
Article Menu

Export Article

Open AccessArticle
Metals 2016, 6(9), 225; doi:10.3390/met6090225

Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

1
School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Wenhua Xilu 180, Shandong 264209, China
2
Department of Physics, School of Science, Northwestern Polytechnical University, Youyi Xilu 127, Shanxi 710072, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Hugo F. Lopez
Received: 11 July 2016 / Revised: 12 September 2016 / Accepted: 13 September 2016 / Published: 15 September 2016
View Full-Text   |   Download PDF [3284 KB, uploaded 15 September 2016]   |  

Abstract

In recent years, CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. %) and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA) of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites. View Full-Text
Keywords: metallic glasses; rapid solidification; glass-forming ability; crystallization metallic glasses; rapid solidification; glass-forming ability; crystallization
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Han, X.; Qin, Y.; Qin, K.; Li, X.; Wang, S.; Mi, J.; Song, K.; Wang, L. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses. Metals 2016, 6, 225.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top