Comparative Study on Combustion Behavior of Aluminum-Based Alloy Fuels and Aluminum Powder in Solid Propellants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Sample Preparation
2.3. Experimental Method
3. Results Analysis
3.1. Morphology and Composition of Aluminum-Base Alloy Fuels
3.2. Thermal Reaction Weight Gain and Activation Energy of Aluminum-Base Alloy Fuels
3.3. Ignition and Combustion Performance of Aluminum-Based Alloy Fuels
3.4. Application of Aluminum-Based Alloy Fuels in Solid Propellant
3.4.1. Mechanics and Safety Performance
3.4.2. Process Adaptability
3.4.3. Combustion Performance
3.4.4. Engine Ignition Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patil, M.S.; Singh, H. Ballistic and mechanical properties of HTPB based composite propellants. J. Hazard. Mater. 1988, 19, 271–278. [Google Scholar] [CrossRef]
- Miller, M.S.; Holmes, H.E. Subatmospheric burning rates and critical diameters for AP/HTPB propellant. J. Propuls. Power 1990, 6, 671–672. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, J.; Zhou, Y.; Zhang, Y.; Cen, K. Thermal decomposition and combustion characteristics of Al/AP/HTPB propellant. J. Therm. Anal. Calorim. 2021, 143, 3935–3944. [Google Scholar] [CrossRef]
- Mahanta, A.K.; Dharmsaktu, I.; Pattnayak, P.K. Rheological Behaviour of HTPB-based Composite Propellant: Effect of Temperature and Pot Life on Casting Rate. Def. Sci. J. 2007, 57, 581–588. [Google Scholar] [CrossRef]
- Shi-xi, W.U.; Tian-fu, Z.; Chong-yang, Z.; Xiao-ping, L.I.; Qi-wei, H.U. Recent Advances on Applications of New Energetic Ingredients in HTPB Composite Solid Propellants. Chin. J. Energetic Mater. 2019, 27, 348–355. [Google Scholar]
- Liu, M.; Yu, W.; Li, S. Effect of aluminum-based additives on the ignition performance of ammonium perchlorate-based composite solid propellants. Acta Astronaut. 2023, 204, 321–330. [Google Scholar] [CrossRef]
- Toros, S.; Ozturk, F.; Kacar, I. Review of warm forming of aluminum–magnesium alloys. J. Mater. Process. Technol. 2008, 207, 1–12. [Google Scholar] [CrossRef]
- Lloyd, D.J. The deformation of commercial aluminum-magnesium alloys. Metall. Trans. A 1980, 11, 1287–1294. [Google Scholar] [CrossRef]
- Makino, A.; Law, C.K. SHS Combustion Characteristics of Several Ceramics and Intermetallic Compounds. J. Am. Ceram. Soc. 1994, 77, 778–786. [Google Scholar] [CrossRef]
- Tang, Q.; Pang, A.M.; Wang, Y. Research progress analysis of aluminum combustion property and mechanism of solid propellant. Guti Huojian Jishu/J. Solid Rocket. Technol. 2015, 38, 232–238. [Google Scholar]
- Xiao, L.Q.; Fan, X.Z.; Wang, H.; Li, J.Z.; Tang, Q.F. Research Progress on the Agglomeration Phenomenon of Aluminum Powder in the Combustion of Aluminized Solid Propellants. Huozhayao Xuebao/Chin. J. Explos. Propellants 2018, 41, 7–15, 25. [Google Scholar]
- DeLuca, L.; Maggi, F.; Dossi, S.; Weiser, V.; Franzin, A.; Gettwert, V. High-energy Metal Fuels for Rocket Propulsion:Characterization and Performance. Huozhayao Xuebao/Chin. J. Explos. Propellants 2013, 2013, 14. [Google Scholar]
- Deluca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M. Chemical Rocket Propulsion—A Comprehensive Survey of Energetic Materials; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zhu, P.; Li, J.C.M.; Liu, C.T. Reaction mechanism of combustion synthesis of NiAl. Mater. Sci. Eng. A 2002, 329–331, 57–68. [Google Scholar] [CrossRef]
- Biswas, A.; Roy, S.K.; Gurumurthy, K.R.; Prabhu, N.; Banerjee, S. A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode. Acta Mater. 2002, 50, 757–773. [Google Scholar] [CrossRef]
- Dyer, T.S.; Munir, Z.A.; Ruth, V. The combustion synthesis of multilayer NiAl systems. Scr. Metall. Mater. 1994, 30, 1281–1286. [Google Scholar] [CrossRef]
- Birol, Y. Aluminothermic reduction of boron oxide for the manufacture of Al–B alloys. Mater. Chem. Phys. 2012, 136, 963–966. [Google Scholar] [CrossRef]
- Liang, D.; Xiao, R.; Liu, J.; Wang, Y. Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend. Aerosp. Sci. Technol. 2019, 84, 1081–1091. [Google Scholar] [CrossRef]
- Corcoran, A.L.; Wang, S.; Aly, Y.; Dreizin, E.L. Combustion of Mechanically Alloyed AlMg Powders in Products of a Hydrocarbon Flame. Combust. Sci. Technol. 2015, 187, 807–825. [Google Scholar] [CrossRef]
- Aly, Y.; Dreizin, E.L. Ignition and combustion of Al·Mg alloy powders prepared by different techniques. Combust. Flame 2015, 162, 1440–1447. [Google Scholar] [CrossRef]
- Parimi, V.S.; Huang, S.; Zheng, X. Enhancing ignition and combustion of micron-sized aluminum by adding porous silicon. Proc. Combust. Inst. 2017, 37, 2317–2324. [Google Scholar] [CrossRef]
- Shi, Y.A.N.; Bing, P.A.N.; Qing-qing, Y.; Jia-peng, W.; Qing-jie, J.; Feng-zhen, D.U. Preparation and Reaction Characteristics of Spherical Al-Si Alloy Fuel. Chin. J. Energetic Mater. 2020, 28, 766–772. [Google Scholar]
- Kou, Y.; Wang, Y.; Zhang, J.; Guo, K.-G.; Song, X.-L. Iron/aluminum nanocomposites prepared by one-step reduction method and their effects on thermal decomposition of AP and AN. Def. Technol. 2023, 22, 74–87. [Google Scholar] [CrossRef]
- Sui, H.; Atashin, S.; Wen, J.Z. Thermo-chemical and Energetic Properties of Layered Nano-thermite Composites. Thermochim. Acta 2016, 642, 17–24. [Google Scholar] [CrossRef]
- Vummidi, S.L.; Aly, Y.; Schoenitz, M.; Dreizin, E.L. Characterization of Fine Nickel-Coated Aluminum Powder as Potential Fuel Additive. J. Propuls. Power 2010, 26, 454–460. [Google Scholar] [CrossRef]
- Seropyan, S.; Saikov, I.; Andreev, D.; Saikova, G.; Alymov, M. Reactive Ni–Al-Based Materials: Strength and Combustion Behavior. Met.-Open Access Metall. J. 2021, 11, 949. [Google Scholar] [CrossRef]
- Mason, B.A.; Groven, L.J.; Son, S.F. The role of microstructure refinement on the impact ignition and combustion behavior of mechanically activated Ni/Al reactive composites. J. Appl. Phys. 2013, 114, 181. [Google Scholar] [CrossRef]
- Aly, Y.; Schoenitz, M.; Dreizin, E.L. Aluminum-Metal Reactive Composites. Combust. Sci. Technol. 2011, 183, 1107–1132. [Google Scholar] [CrossRef]
- Aly, Y.; Schoenitz, M.; Dreizin, E.L. Ignition and combustion of mechanically alloyed Al–Mg powders with customized particle sizes. Combust. Flame 2013, 160, 835–842. [Google Scholar] [CrossRef]
- Li, L.F.; Cai, S.Z.; Xu, C.J.; Fu, H.; Zou, H. Preparation and Performance of High Reactive Al-Mg-Zr Alloy Fuels with Intensive Heat Release. Chin. J. Energetic Mater. 2016, 24, 137–143. [Google Scholar]
- Yi, H.; Cai, S.; Hui, Z. Effect of Rare Earth Ce on Thermal Performance of Al-Mg-Ce Alloy Fuels. Rare Met. Mater. Eng. 2018, 47, 1185–1191. [Google Scholar]
- Murray, J.L.; McAlister, A.J. The Al-Si (Aluminum-Silicon) system. Bull. Alloy Phase Diagr. 1984, 5, 74–84. [Google Scholar] [CrossRef]
- Zhang, J.K.; Zhao, F.Q.; Qin, Z.; Li, H. Research Progress of Al-based Alloy Fuels and Perspectives for Applications in Solid Propellants. Chin. J. Explos. Propellants 2023, 46, 101–116. [Google Scholar]
- GJB 772A-92; Explosive Test Method. COSTIND: Beijing, China, 1997.
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Cheng, L.; Gao, P.; Li, Y.; Song, D. Ignition and Combustion Characteristics of B/NC/CuO Thermite Microparticles. Metals 2022, 12, 1419. [Google Scholar] [CrossRef]
Element | Density/ (g·cm−3) | Melting Point/°C | Boiling Point/°C | Combustion Heat/ (kJ·kg−1) |
---|---|---|---|---|
Al | 2.70 | 660 | 2447 | 31,058 |
Mg | 1.74 | 650 | 1090 | 25,000 |
Zn | 7.14 | 420 | 907 | 5323 |
Si | 2.33 | 1410 | 2355 | 35,214 |
Sample | D50/μm | Composition/% | Purity/% | |||
---|---|---|---|---|---|---|
Al | Mg | Zn | Si | |||
Al–Mg | 33.54 | 88.64 | 9.48 | 0 | 0.0069 | 98.12 |
Al–Zn | 27.63 | 89.15 | 0 | 10.74 | 0.035 | 99.89 |
Al–Si–Mg | 26.52 | 92.30 | 0.5 | 0 | 7.1 | 99.9 |
Al | 28.46 | 99.45 | 0 | 0 | 0 | 99.45 |
Sample | Tp/°C | Ek/(kJ·mol−1) | Rk | Eo/(kJ·mol−1) | Ro | ||
---|---|---|---|---|---|---|---|
β = 10 | β = 20 | β = 30 | |||||
Al–Mg | 1175.3 | 1204.2 | 1224.1 | 383.08 | 0.99 | 387.56 | 0.99 |
Al–Zn | 1018.1 | 1056.7 | 1080.5 | 233.95 | 0.99 | 243.35 | 0.99 |
Al–Si–Mg | 1059.5 | 1083.8 | 1129.5 | 208.98 | 0.95 | 220.37 | 0.94 |
Al | 1042.6 | 1060.9 | 1068.8 | 582.17 | 0.99 | 574.60 | 0.99 |
Sample | QT/(kJ·kg−1) | QA/(kJ·kg−1) | ηc/% | Density/(g·cm−3) | Density Calorific Value/(kJ·cm−3) |
---|---|---|---|---|---|
Al–Mg | 29,926 | 29,161 | 97.4 | 2.56 | 74.7 |
Al–Zn | 28,296 | 25,694 | 90.8 | 2.82 | 72.5 |
Al–Si–Mg | 31,317 | 30,578 | 97.6 | 2.61 | 79.8 |
Al | 30,914 | 28,084 | 90.8 | 2.68 | 75.3 |
Number | η/(Pa·s) | a | n | |||||
---|---|---|---|---|---|---|---|---|
0.5 h | 1 h | 1.5 h | 2 h | 2.5 h | 3 h | |||
1# | 296 | 354 | 385 | 409 | 488 | 520 | 273 | 0.22 |
2# | 260 | 294 | 349 | 384 | 432 | 472 | 234 | 0.24 |
3# | 203 | 238 | 261 | 284 | 314 | 351 | 188 | 0.21 |
4# | 295 | 344 | 364 | 392 | 435 | 487 | 274 | 0.22 |
Number | Fuel | Corrected to 7 MPa Specific Impulse/(N·s·kg−1) | Specific Impulse Efficiency/% | |
---|---|---|---|---|
Theoretical Value | Measured Value | |||
5# | Al–Zn | 261.9 | 235.7 | 90.00 |
6# | Al–Si–Mg | 265.6 | 238.0 | 89.61 |
7# | Al | 265.6 | 237.5 | 89.42 |
Number | Residue on the Inner Wall/g | Residue on the Top Cover and Convergence Section/g | D50/μm | Active Aluminum Content/% | Throat Diameter/mm | ||
---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | Expansion | |||||
5# | 2.03 | 6.69 | 134 | 3.6 | 20.90 | 21.40 | 0.50 |
6# | 2.31 | 7.52 | 147 | 3.5 | 20.0 | 20.58 | 0.58 |
7# | 3.65 | 18.25 | 153 | 4.1 | 20.10 | 20.92 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, H.; Wang, K.; Ren, H.; Jiao, Q. Comparative Study on Combustion Behavior of Aluminum-Based Alloy Fuels and Aluminum Powder in Solid Propellants. Metals 2023, 13, 1492. https://doi.org/10.3390/met13081492
Xin H, Wang K, Ren H, Jiao Q. Comparative Study on Combustion Behavior of Aluminum-Based Alloy Fuels and Aluminum Powder in Solid Propellants. Metals. 2023; 13(8):1492. https://doi.org/10.3390/met13081492
Chicago/Turabian StyleXin, Haoyue, Kun Wang, Hui Ren, and Qingjie Jiao. 2023. "Comparative Study on Combustion Behavior of Aluminum-Based Alloy Fuels and Aluminum Powder in Solid Propellants" Metals 13, no. 8: 1492. https://doi.org/10.3390/met13081492