Could Systemic Inflammatory Index Predict Diabetic Kidney Injury in Type 2 Diabetes Mellitus?
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turkish Endocrinology and Metabolism Association, Diagnosis, Treatment and Follow-up Guide of Diabetes Mellitus and Complications. 2022, pp. 15–16. Available online: https://file.temd.org.tr/Uploads/publications/guides/documents/diabetes-mellitus_2022.pdf (accessed on 15 April 2023).
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef]
- Murphy, D.; McCulloch, C.E.; Lin, F.; Banerjee, T.; Bragg-Gresham, J.L.; Eberhardt, M.S.; Morgenstern, H.; Pavkov, M.E.; Saran, R.; Powe, N.R.; et al. Trends in Prevalence of Chronic Kidney Disease in the United States. Ann. Intern. Med. 2016, 165, 473–481. [Google Scholar] [CrossRef]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Gui, D.; Zheng, L.; Zhai, R.; Wang, F.; Wang, N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J. Diabetes Res. 2017, 2017, 1839809. [Google Scholar] [CrossRef] [PubMed]
- Mima, A. Diabetic nephropathy: Protective factors and a new therapeutic paradigm. J. Diabetes Complicat. 2013, 27, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Long, J.; Jiang, W.; Shi, Y.; He, X.; Zhou, Z.; Li, Y.; Yeung, R.O.; Wang, J.; Matsushita, K.; et al. Trends in Chronic Kidney Disease in China. N. Engl. J. Med. 2016, 375, 905–906. [Google Scholar] [CrossRef]
- Ritz, E.; Stefanski, A. Diabetic nephropathy in type II diabetes. Am. J. Kidney Dis. 1996, 27, 167–194. [Google Scholar] [CrossRef]
- van Dijk, C.; Berl, T. Pathogenesis of diabetic nephropathy. Rev. Endocr. Metab. Disord. 2004, 5, 237–248. [Google Scholar] [CrossRef]
- Wolf, G. New insights into the pathophysiology of diabetic nephropathy: From haemodynamics to molecular pathology. Eur. J. Clin. Investig. 2004, 34, 785–796. [Google Scholar] [CrossRef]
- Cao, Z.; Cooper, M.E. Pathogenesis of diabetic nephropathy. J. Diabetes Investig. 2011, 2, 243–247. [Google Scholar] [CrossRef]
- Jha, J.C.; Banal, C.; Chow, B.S.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal. 2016, 25, 657–684. [Google Scholar] [CrossRef] [PubMed]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic Classification of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Maezawa, Y.; Takemoto, M.; Yokote, K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J. Diabetes Investig. 2015, 6, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Najafian, C.E.A.; Fogo, A.B. Pathology of human diabetic nephropathy. Diabetes Kidney 2011, 170, 36–47. [Google Scholar]
- Pourghasem, M.; Shafi, H.; Babazadeh, Z. Histological changes of kidney in diabetic nephropathy. Casp. J. Intern. Med. 2015, 6, 120–127. [Google Scholar]
- Cooper, M.E. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001, 44, 1957–1972. [Google Scholar] [CrossRef]
- Thomas, M.C.; Pickering, R.J.; Tsorotes, D.; Koitka, A.; Sheehy, K.; Bernardi, S.; Toffoli, B.; Nguyen-Huu, T.P.; Head, G.A.; Fu, Y.; et al. Genetic Ace2 deficiency accentuates vascular inflammation and athero-sclerosis in the ApoE knockout mouse. Circ. Res. 2010, 107, 888–897. [Google Scholar] [CrossRef]
- Tikellis, C.; Bialkowski, K.; Pete, J.; Sheehy, K.; Su, Q.; Johnston, C.; Cooper, M.E.; Thomas, M.C. ACE2 Deficiency Modifies Renoprotection Afforded by ACE Inhibition in Experimental Diabetes. Diabetes 2008, 57, 1018–1025. [Google Scholar] [CrossRef]
- Bonnet, F.; Cooper, M.E.; Kawachi, H.; Allen, T.J.; Boner, G.; Cao, Z. Irbesartan normalizes the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia 2001, 44, 874–877. [Google Scholar]
- Bonnet, F.; Tikellis, C.; Kawachi, H.; Burns, W.C.; Wookey, P.J.; Cao, Z.; Cooper, M.E. Nephrin expression in the post-natal developing kidney in normotensive and hypertensive rats. Clin. Exp. Hypertens. 2002, 24, 371–381. [Google Scholar] [CrossRef]
- Davis, B.J.; Cao, Z.; de Gasparo, M.; Kawachi, H.; Cooper, M.E.; Allen, T.J. Disparate effects of angiotensin II antagonists and calcium channel blockers on albuminuria in experimental diabetes and hypertension: Potential role of nephrin. J. Hypertens. 2003, 21, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Morales, R.E.; del Pino, M.D.; Valdivielso, J.M.; Ortiz, A.; Mora-Fernández, C.; Navarro-González, J.F. Inflammation in Diabetic Kidney Disease. Nephron 2019, 143, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiang, C.-Y.; Chen, B.-X.; Zhao, W.; Meng, D. The association between high-sensitivity C-reactive protein concentration and diabetic nephropathy: A meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4558–4568. [Google Scholar]
- Tang, M.; Cao, H.; Wei, X.-H.; Zhen, Q.; Liu, F.; Wang, Y.-F.; Fan, N.-G.; Peng, Y.-D. Association Between High-Sensitivity C-Reactive Protein and Diabetic Kidney Disease in Patients With Type 2 Diabetes Mellitus. Front. Endocrinol. 2022, 13, 885516. [Google Scholar] [CrossRef]
- Bilgin, S.; Kurtkulagi, O.; Tel, B.M.A.; Duman, T.T.; Kahveci, G.; Khalid, A.; Aktas, G. Does C-reactive protein to serum Albumin Ratio correlate with diabEtic nephropathy in patients with Type 2 dIabetes MEllitus? The CARE TIME study. Prim. Care Diabetes 2021, 15, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Atak, B.; Aktas, G.; Duman, T.T.; Erkus, E.; Kocak, M.Z.; Savli, H. Diabetes control could through platelet-to-lymphocyte ratio in hemograms. Rev. Assoc. Médica Bras. 2019, 65, 38–42. [Google Scholar] [CrossRef]
- Aktaş, G.; Cakiroglu, B.; Sit, M.; Uyeturk, U.; Alcelik, A.; Savli, H.; Kemahli, E. Mean Platelet Volume: A simple indicator of chronic prostatitis. Acta Med. Mediterr. 2013, 29, 551–554. [Google Scholar]
- Cakır, L.; Aktas, G.; Mercimek, O.B.; Enginyurt, O.; Kaya, Y.; Mercimek, K. Are Red Cell Distribution Width and Mean Platelet Volume associated with Rheumatoid Arthritis? Biomed. Res. 2016, 27, 292–294. [Google Scholar]
- Kocak, M.Z.; Aktas, G.; Erkus, E.; Duman, T.T.; Atak, B.M.; Savli, H. Mean Platelet Volume to Lymphocyte Ratio as a Novel Marker for Diabetic Nephropathy. J. Coll. Phys. Surg. Pak. 2018, 28, 844–847. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.-R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Chen, J.-H.; Zhai, E.-T.; Yuan, Y.; Wu, K.-M.; Xu, J.-B.; Peng, J.-J.; Chen, C.-Q.; He, Y.-L.; Cai, S.-R. Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J. Gastroenterol. 2017, 23, 6261–6272. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Shao, Y.; Zhu, D.; Zheng, X.; Zhou, Q.; Zhou, W.; Ni, X.; Wu, C.; Jiang, J. Systemic Immune-Inflammation Index Predicts Prognosis of Patients with Esophageal Squamous Cell Carcinoma: A Propensity Score-matched Analysis. Sci. Rep. 2016, 6, 39482. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Cui, B.; Wang, M.; Yang, Z.; Wang, L.; Xu, Q. Systemic Immune-inflammation Index, Based on Platelet Counts and Neutrophil-Lymphocyte Ratio, Is Useful for Predicting Prognosis in Small Cell Lung Cancer. Tohoku J. Exp. Med. 2015, 236, 297–304. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Q.; Zhu, L.; Zhang, Y.; Lu, X.; Wu, Y.; Liu, L. Prognostic Value of Preoperative Systemic Immune-Inflammation Index in Patients with Cervical Cancer. Sci. Rep. 2019, 9, 3284. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Yan, Q.; Li, S.; Li, B.; Feng, Y. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio are predictive of chemotherapeutic response and prognosis in epithelial ovarian cancer patients treated with platinum-based chemotherapy. Cancer Biomark. 2016, 17, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, D.; Dai, Z.; Li, X. Association Between Systemic Immune-Inflammation Index and Diabetic Depression. Clin. Interv. Aging 2021, 16, 97–105. [Google Scholar] [CrossRef]
- Gündoğdu, K.; Doğan, E.; Çelik, E.; Alagöz, G. Serum inflammatory marker levels in serous macular detachment secondary to diabetic macular edema. Eur. J. Ophthalmol. 2022, 32, 3637–3643. [Google Scholar] [CrossRef]
- Chung, F.-M.; Tsai, J.C.; Chang, D.M.; Shin, S.J.; Lee, Y.J. Peripheral total and differential leukocyte count in diabetic nephropathy: The relationship of plasma leptin to leukocytosis. Diabetes Care 2005, 28, 1710–1717. [Google Scholar] [CrossRef]
- Huang, W.; Huang, J.; Liu, Q.; Lin, F.; He, Z.; Zeng, Z.; He, L. Neutrophil-lymphocyte ratio is a reliable predictive marker for early-stage diabetic nephropathy. Clin. Endocrinol. 2014, 82, 229–233. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Li, Y.; Quan, J.; Wei, S.; An, S.; Yang, R.; Liu, J. The association of neutrophil to lymphocyte ratio, mean platelet volume, and platelet distribution width with diabetic retinopathy and nephropathy: A meta-analysis. Biosci. Rep. 2018, 38, BSR20180172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Chen, J.; Xiong, Y.; Wang, L.; Huang, X.; Sun, T.; Zha, B.; Wu, Y.; Yan, C.; Zang, S.; et al. Increased neutrophil count Is associated with the development of chronic kidney disease in patients with diabetes. J. Diabetes 2022, 14, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Phillipson, M.; Kubes, P. The neutrophil in vascular inflammation. Nat. Med. 2011, 17, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, N.; Reddy, M.A.; Guha, M.; Natarajan, R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003, 52, 1256–1264. [Google Scholar] [CrossRef]
- Guha, M.; Bai, W.; Nadler, J.L.; Natarajan, R. Molecular Mechanisms of Tumor Necrosis Factor α Gene Expression in Monocytic Cells via Hyperglycemia-induced Oxidant Stress-dependent and -independent Pathways. J. Biol. Chem. 2000, 275, 17728–17739. [Google Scholar] [CrossRef]
- Hofmann, M.A.; Schiekofer, S.; Kanitz, M.; Klevesath, M.S.; Joswig, M.; Lee, V.; Morcos, M.; Tritschler, H.; Ziegler, R.; Wahl, P.; et al. Insufficient glycemic control increases nuclear factor-κB binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes. Diabetes Care 1998, 21, 1310–1316. [Google Scholar] [CrossRef]
- Kedziora-Kornatowska, K. Production of Superoxide and Nitric Oxide by Granulocytes in Non-Insulin-Dependent Diabetic Patients with and Without Diabetic Nephropathy. IUBMB Life 1999, 48, 359–362. [Google Scholar] [CrossRef]
- Korpinen, E.; Groop, P.-H.; Fagerudd, J.A.; Teppo, A.M.; Åkerblom, H.K.; Vaarala, O. Increased secretion of TGF-β1 by peripheral blood mononuclear cells from patients with Type 1 diabetes mellitus with diabetic nephropathy. Diabet. Med. 2001, 18, 121–125. [Google Scholar] [CrossRef]
- Chow, F.; Ozols, E.; Nikolic-Paterson, D.J.; Atkins, R.C.; Tesch, G.H. Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney Int. 2004, 65, 116–128. [Google Scholar] [CrossRef]
- Kocak, M.Z.; Aktas, G.; Duman, T.T.; Atak, B.M.; Savli, H. Is Uric Acid elevation a random finding or a causative agent of diabetic nephropathy? Rev. Assoc. Med. Bras. 2019, 65, 1155–1160. [Google Scholar] [CrossRef]
- Duman, T.T.; Aktas, G.; Atak, B.M.; Kocak, M.Z.; Erkus, E.; Savli, H. Neutrophil to lymphocyte ratio as an indicative of diabetic control level in type 2 diabetes mellitus. Afr. Health Sci. 2019, 19, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- Kocak, M.Z.; Aktas, G.; Duman, T.T.; Atak, B.M.; Kurtkulagi, O.; Tekce, H.; Bilgin, S.; Alaca, B. Monocyte lymphocyte ratio As a predictor of Diabetic Kidney Injury in type 2 Diabetes mellitus; The MADKID Study. J. Diabetes Metab. Disord. 2020, 19, 997–1002. [Google Scholar] [CrossRef] [PubMed]
DKI Present n (%) | DKI Absent n (%) | Healthy n (%) | p Value | |
---|---|---|---|---|
Gender | ||||
Female | 71 (56.3%) | 134 (59.0%) | 37 (19.9%) | <0.001 |
Male | 55 (43.7%) | 93 (41.0%) | 149 (80.1%) | |
Smoking | ||||
User | 25 (20.0%) | 37 (16.3%) | 17 (10.7%) | 0.088 |
Non-user | 100 (80.0%) | 190 (83.7%) | 142 (89.3%) | |
Alcohol | ||||
Consumer | 6 (4.8%) | 2 (0.9%) | 0 (0.0%) | 0.003 |
Non-consumer | 120 (95.2%) | 225 (99.1%) | 159 (100.0%) | |
Retinopathy | ||||
Present | 17 (13.5%) | 15 (6.6%) | - | 0.031 |
Absent | 109 (96.5%) | 212 (93.4%) | ||
Neuropathy | ||||
Present | 86 (68.3%) | 52 (22.9%) | - | <0.001 |
Absent | 40 (31.7%) | 175 (77.1%) |
DKI Present | DKI Absent | Healthy | p Value * | |
---|---|---|---|---|
Median (Min–Max) | ||||
Age (years) | 59 (41.86) | 58 (29.76) | 53 (18.76) | <0.001 |
Height (cm) | 1.59 (1.46–1.81) | 1.61 (1.45–1.85) | 1.68 (1.52–1.87) | <0.001 |
Weight (kg) | 78 (48–106) | 86 (59–117) | 187.3 (55–136) | <0.001 |
BMI (kg/m2) | 29.1 (16.6–43.5) | 32 (21.9–46.1) | 27.7 (18.3–49.4) | <0.001 |
Waist Circumference (cm) | 102 (75–126) | 107 (82–104) | 98 (65–144) | <0.001 |
Systolic Blood Pressure (mmHg) | 120 (90–180) | 130 (100–180) | 120 (90–180) | 0.02 |
Diastolic Blood Pressure (mmHg) | 80 (50–110) | 80 (60–100) | 80 (50–105) | 0.867 |
DKI Present | DKI Absent | Healthy | p Value * | |
---|---|---|---|---|
Median (Min–Max) | ||||
WBC (mm3/count) | 6.240 (3.360–10.800) | 5.050 (2.500–13.700) | 5.500 (1.240–14.100) | <0.001 |
Plt (mm3/count) | 251.000 (92.600–418.000) | 229.000 (150.000–915.000) | 239.000 (151.000–374.000) | <0.001 |
Neu (mm3/count) | 2.085 (356–7.170) | 2.470 (980–109.000) | 3.200 (1.000–8.330) | <0.001 |
Lym (mm3/count) | 1980 (356–3900) | 1950 (1120–5010) | 2100 (833–4510) | <0.001 |
Hb (g/dL) | 13.1 (9.8–16.2) | 13.3 (10.2–17.9) | 14 (8.8–17.1) | <0.001 |
Hct (%) | 38.8 (29.7–48.5) | 38.1 (31–51.3) | 42 (27.3–51.2) | <0.001 |
Fasting Blood Glucose (mg/dL) | 186 (86–565) | 143 (92–514) | 93 (69–118) | <0.001 |
HbA1c (mmoL/dL) | 9 (6.4–16.5) | 7.6 (5.1–16) | 5.4 (5.2–6.8) | <0.001 |
CRP (mg/dL) | 8.1 (0.9–45) | 3.4 (0.01–22) | 2.4 (0.1–11.9) | <0.001 |
Urea (mg/dL) | 30 (17.58) | 32 (13–57.8) | 28 (13–62) | 0.124 |
Creatine (mg/dL) | 0.8 (0.63–1.38) | 0.78 (0.66–1.87) | 0.8 (0.4–2.7) | 0.235 |
GFR (mL/min) | 96.3 (39.14–150.8) | 111.5 (51.2–187.2) | 115.2 (88.4–208) | 0.001 |
Uric Acid (mg/dL) | 5.5 (3.2–10) | 5.5 (2.4–9.6) | 5.7 (2.5–10.4) | 0.071 |
Serum Albumin (g/L) | 4.3 (3.5–5.1) | 4.4 (3.9–4.9) | 4.5 (3.8–5.1) | 0.001 |
AST (U/L) | 16 (11–39) | 19 (8–39) | 18 (9–31) | <0.001 |
ALT(U/L) | 18 (8–64) | 23 (6–94) | 19 (6–58) | <0.001 |
Total Cholesterol (mg/dL) | 208 (107–318) | 198 (92–325) | 200 (114–290) | 0.124 |
Triglyceride (mg/dL) | 176 (47–411) | 153 (50–1050) | 134 (52–680) | 0.013 |
LDL (mg/dL) | 126 (42.3–200) | 119 (42–244) | 115 (49–192) | 0.352 |
HDL (mg/dL) | 49.8 (26.8–86.6) | 44 (25.5–61) | 47 (20.6–85.2) | <0.001 |
SII | 584 (178.4–4819) | 282.5 (64.3–618.4) | 236 (77.4–616.7) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taslamacioglu Duman, T.; Ozkul, F.N.; Balci, B. Could Systemic Inflammatory Index Predict Diabetic Kidney Injury in Type 2 Diabetes Mellitus? Diagnostics 2023, 13, 2063. https://doi.org/10.3390/diagnostics13122063
Taslamacioglu Duman T, Ozkul FN, Balci B. Could Systemic Inflammatory Index Predict Diabetic Kidney Injury in Type 2 Diabetes Mellitus? Diagnostics. 2023; 13(12):2063. https://doi.org/10.3390/diagnostics13122063
Chicago/Turabian StyleTaslamacioglu Duman, Tuba, Feyza Nihal Ozkul, and Buse Balci. 2023. "Could Systemic Inflammatory Index Predict Diabetic Kidney Injury in Type 2 Diabetes Mellitus?" Diagnostics 13, no. 12: 2063. https://doi.org/10.3390/diagnostics13122063
APA StyleTaslamacioglu Duman, T., Ozkul, F. N., & Balci, B. (2023). Could Systemic Inflammatory Index Predict Diabetic Kidney Injury in Type 2 Diabetes Mellitus? Diagnostics, 13(12), 2063. https://doi.org/10.3390/diagnostics13122063