Next Article in Journal
Dynamic Contact between a Wire Rope and a Pulley Using Absolute Nodal Coordinate Formulation
Previous Article in Journal / Special Issue
Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency
Article Menu

Export Article

Open AccessArticle
Machines 2016, 4(1), 3; doi:10.3390/machines4010003

High-Efficiency Solar-Powered 3-D Printers for Sustainable Development

1
Department of Materials Science & Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA
2
CAPES Foundation, Ministry of Education of Brazil, Brazil
3
Department of Electrical & Computer Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Academic Editor: David Mba
Received: 14 December 2015 / Revised: 4 January 2016 / Accepted: 11 January 2016 / Published: 15 January 2016
(This article belongs to the Special Issue Feature Papers)
View Full-Text   |   Download PDF [5008 KB, uploaded 15 January 2016]   |  

Abstract

The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper) resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT), has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic (PV)-powered mobile systems have been developed, but recent improvements in novel delta-style 3-D printer designs allows for reduced costs and improved performance. This study builds on these innovations to develop and experimentally validate a mobile solar-PV-powered delta 3-D printer system. It is designed to run the RepRap 3-D printer regardless of solar flux. The electrical system design is tested outdoors for operating conditions: (1) PV charging battery and running 3-D printer; (2) printing under low insolation; (3) battery powering the 3-D printer alone; (4) PV charging the battery only; and (5) battery fully charged with PV-powered 3-D printing. The results show the system performed as required under all conditions providing feasibility for adoption in off-grid rural communities. 3-D printers powered by affordable mobile PV solar systems have a great potential to reduce poverty through employment creation, as well as ensuring a constant supply of scarce products for isolated communities. View Full-Text
Keywords: solar energy; photovoltaic; distributed manufacturing; appropriate technology; 3-D printing; off-grid; renewable energy; sustainable development solar energy; photovoltaic; distributed manufacturing; appropriate technology; 3-D printing; off-grid; renewable energy; sustainable development
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Gwamuri, J.; Franco, D.; Khan, K.Y.; Gauchia, L.; Pearce, J.M. High-Efficiency Solar-Powered 3-D Printers for Sustainable Development. Machines 2016, 4, 3.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Machines EISSN 2075-1702 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top