Geochemistry and Geochronology of Ophiolitic Rocks from the Dongco and Lanong Areas, Tibet: Insights into the Evolution History of the Bangong-Nujiang Tethys Ocean
Abstract
:1. Introduction and Rationale of the Study
2. Geological Background
2.1. The Dongco Ophiolite
2.2. The Lanong Ophiolite
3. Petrographic Delineation
3.1. Ophiolitic Rocks from Dongco
3.2. Ophiolitic Rocks from Lanong
4. Analytical Methods
5. Analytical Results
5.1. Geochemistry
5.2. Uranium–Pb Dating of Zircons
5.3. Hafnium Isotopic Composition of Zircons
5.4. Strontium–Nd Isotopic Systematics
6. Discussion
6.1. Potential Effects of Post-Solidification Alteration, Melt Fractionation, and Crustal Contamination
6.2. Insights into the Origin of Anorthosites
6.3. Petrogenesis of the Dongco Gabbros
6.4. Petrogenesis of the Lanong Gabbros
6.5. Implications for the Geotectonic Evolution of the BNTO
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolites and Their Origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Moores, E.M. Origin and emplacement of ophiolites. Rev. Geophy. 1982, 20, 735–760. [Google Scholar] [CrossRef]
- Moores, E.M.; Kellogg, L.H.; Dilek, Y. Tethyan ophiolites, mantle convection, and tectonic ‘‘historical contingency’’: A resolution of the ‘‘ophiolite conundrum’’. In Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program: Boulder; Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A., Eds.; Colorado Geological Society of America: Boulder, CO, USA, 2000; Volume 349, pp. 3–12. [Google Scholar]
- Morris, A.; Maffione, M. Is the Troodos ophiolite (Cyprus) a complete, transform fault-bounded Neotethyan ridge segment? Geology 2016, 44, 199–202. [Google Scholar] [CrossRef]
- Dewey, J.F.; Bird, J.M. Origin and Emplacement of the Ophiolite Suite: Appalachian Ophiolites in Newfoundland. J. Geophys. Res. 1971, 76, 3179–3206. [Google Scholar] [CrossRef]
- Kidd, R.G.W.; Cann, J.R. Chilling statistics indicate an ocean-floor spreading origin for the Troodos complex, Cyprus. Earth Planet. Sci. Lett. 1974, 24, 151–155. [Google Scholar] [CrossRef]
- Rassios, A.E.; Dilek, Y. Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos 2009, 108, 207–223. [Google Scholar] [CrossRef]
- Boudier, F.; Nicolas, A. Axial melt lenses at oceanic ridges—A case study in the Oman ophiolite. Earth Planet. Sci. Lett. 2011, 304, 313–325. [Google Scholar] [CrossRef]
- Cowan, R.J.; Searle, M.P.; Waters, D.J. Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: Implications for ophiolite obduction processes. Geol. Soc. Lond. Spec. Publ. 2014, 392, 155–175. [Google Scholar] [CrossRef]
- Dilek, Y. Ophiolite concept and its evolution. Geol. Soc. Am. Spec. Pap. 2003, 373, 1–16. [Google Scholar]
- Pearce, J.A.; Lippard, S.J.; Roberts, S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. Spec. Publ. 1984, 16, 77–94. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, Q.; Kapsiotis, A.; Lenaz, D.; Velicogna, M.; Xu, C.; Cheng, C.; Xia, B.; Liu, W.; Xiao, Y.; et al. Coexistence of MORB- and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-typemagmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle. Geol. Soc. Am. Bull. 2019, 131, 1276–1294. [Google Scholar] [CrossRef]
- Dilek, Y.; Flower, M.F.J. Arc-trench rollback and fore-arc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Geol. Soc. Lond. Spec. Publ. 2003, 218, 43–68. [Google Scholar] [CrossRef]
- Pickett, E.A.; Robertson, A.H.F. Formation of the Late Palaeozoic–Early Mesozoic Karakaya Complex and related ophiolites in NW Turkey by Palaeotethyan subduction-accretion. J. Geol. Soc. 1996, 145, 393–400. [Google Scholar] [CrossRef]
- Gnos, E.; Immenhauser, A.; Peters, T. Late Cretaceous/early Tertiary convergence between the Indian and Arabian plates recorded in ophiolites and related sediments. Tectonophysics 1997, 271, 1–19. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Guynn, J.H.; Kapp, P.; Pullen, A.; Heizler, M.; Gehrels, G.; Ding, L. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 2006, 34, 505–508. [Google Scholar] [CrossRef]
- Girardeau, J.; Marcoux, J.; Allègre, C.J.; Bassoullet, J.P.; Youking, T.; Xiao, X.C.; Zao, Y.G.; Wang, X.B. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature 1984, 307, 27–31. [Google Scholar] [CrossRef]
- Pearce, J.A.; Deng, W.M. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1988, 327, 215–238. [Google Scholar] [CrossRef]
- Zhang, K.J. Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth Planet. Sci. Lett. 2004, 229, 73–89. [Google Scholar] [CrossRef]
- Zhang, K.J.; Xia, B.D.; Wang, G.M.; Li, Y.T.; Ye, H.F. Early Cretaceous stratigraphy, depositional environment, sandstone provenance, and tectonic setting of central Tibet, western China. Geol. Soc. Am. Bull. 2004, 116, 1202–1222. [Google Scholar] [CrossRef]
- Zhang, K.J.; Xia, B.; Zhang, Y.X.; Liu, W.L.; Zeng, L.; Li, J.F.; Xu, L.F. Central Tibetan Meso-Tethyan oceanic plateau. Lithos 2014, 210–211, 278–288. [Google Scholar] [CrossRef]
- Zhang, K.J.; Zhang, Y.X.; Tang, X.C.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Wang, B.D.; Wang, L.Q.; Chung, S.L.; Chen, J.L.; Yin, F.G.; Liu, H.; Li, X.B.; Chen, L.K. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 2016, 245, 18–33. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, W.L.; Xia, B.; Liu, J.N.; Guan, Y.; Yin, Z.X.; Huang, Q.T. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution. Lithos 2017, 292–293, 111–131. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Zhu, D.C.; Li, S.M.; Cawood, P.A.; Wang, Q.; Zhao, Z.D.; Liu, S.A.; Wang, L.Q. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.F.; Malpas, J.; Robinson, P.T.; Reynolds, P.H. The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Can. J. Earth. Sci. 1997, 34, 59–65. [Google Scholar] [CrossRef]
- Fan, J.J.; Li, C.; Xie, C.M.; Wang, M.; Chen, J.W. Petrology and U–Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean. Lithos 2015, 227, 148–160. [Google Scholar] [CrossRef]
- Bao, P.S.; Xiao, X.C.; Su, L.; Wang, J. Petrological, geochemical and chronological constraints for the tectonic setting of the Dongco ophiolite in Tibet. Sci. China Ser. D Earth Sci. 2007, 50, 660–671. [Google Scholar] [CrossRef]
- Wang, W.L.; Aitchison, J.C.; Lo, C.H.; Zeng, Q.G. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. J. Asian Earth Sci. 2008, 33, 122–138. [Google Scholar] [CrossRef]
- Li, J.F.; Xia, B.; Wang, R.; Liu, W.L. Mineralogical characteristics of the Dong Tso ophiolite and its tectonic implications. Geotecton. Metallog. 2013, 37, 308–319. [Google Scholar]
- Li, J.F.; Xia, B.; Xia, L.Z.; Xu, L.F.; Liu, W.L.; Cai, Z.R.; Yang, Z.Q. Geochronology of the Dong Tso Ophiolite and the Tectonic Environment. Acta Geol. Sin. (Engl. Ed.) 2013, 87, 1604–1616. [Google Scholar] [CrossRef] [Green Version]
- Xia, B. Ophiolite and Tectonostratigraphic Terrane Map of Himalaya and Adjacent Areas. Scale 1:2,500,000; Gansu Science and Technology Publishing House: Lanzhou, China, 1993. (In Chinese) [Google Scholar]
- Wang, X.B.; Bao, P.S.; Deng, W.M. Xizang (Tibet) Ophiolites; Ecological Publishing House: Beijing, China, 1987. (In Chinese) [Google Scholar]
- Qiu, R.Z.; Zhou, S.; Deng, J.F.; Li, J.F.; Xiao, Q.H.; Cai, Z.Y. Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangong Co-Nujiang ophiolite belt, Tibet-with a discussion of the age of the Bangong Co-Nujiang ophiolite belt. Geol. China 2004, 31, 262–268. [Google Scholar]
- Wu, Y.; Chen, S.Y.; Qin, M.K.; Guo, D.F.; Guo, G.L.; Zhang, C.; Yang, J.S. Zircon U–Pb Ages of the Dongcuo Ophiolite in the Western Bangong-Nujiang Suture Zone and Their Geological Significance. Earth Sci. J. China Univ. Geosci. 2018, 43, 1070–1084. [Google Scholar]
- Xu, L.F.; Xia, B.; Li, J.F.; Zhong, L.F. Geochemical Characteristics and Genesis of Pillow Basalts from the Lanong Ophiolite in Tibet, China. Geotecton. Metallog. 2010, 34, 105–113. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Cheng, C.; Zheng, H.; Kapsiotis, A.; Liu, W.; Lenaz, D.; Velicogna, M.; Zhong, L.; Huang, Q.; Yuan, Y.; Xia, B. Geochemistry and geochronology of dolerite dykes from the Daba and Dongbo peridotite massifs, SW Tibet: Insights into the style of mantle melting at the onset of Neo-Tethyan subduction. Lithos 2018, 322, 281–295. [Google Scholar] [CrossRef]
- Chu, Z.Y.; Wu, F.Y.; Walker, R.J.; Rudnick, R.L.; Pitcher, L.; Puchtel, I.S.; Yang, Y.H.; Wilde, S.A. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J. Petrol. 2009, 50, 1857–1898. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.F.; Fan, W.M.; Ying, J.F.; Zhang, J.; Zhao, X.M.; Su, B.X. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos 2010, 117, 229–246. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Y.G.; Mei, H.J.; Zheng, Y.F.; He, B.; Pirajno, F. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction. Earth Planet. Sci. Lett. 2004, 228, 525–546. [Google Scholar] [CrossRef]
- Xu, Y.G.; Chung, S.L.; Jahn, B.M.; Wu, G.Y. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Pearce, J.A.; Cann, J.R. Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyses. Earth Planet. Sci. Lett. 1973, 19, 290–300. [Google Scholar] [CrossRef]
- Wood, D.A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–33. [Google Scholar] [CrossRef]
- Zou, H.B.; Zindler, A.; Xu, X.S.; Qi, Q. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem. Geol. 2000, 171, 33–47. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Science Publishing: Oxford, UK, 1985; pp. 1–312. [Google Scholar]
- Irvine, T.N. Layering and related structures in the Duke Island and Skaergaard intrusions: Similarities, differences and origins. In Origin of Igneous Layering; Parson, I., Ed.; NATO ASI Series, Serie. C; Springer: New York, NY, USA, 1987; Volume 196, pp. 185–245. [Google Scholar]
- Morales, L.F.G.; Boudier, F.; Nicolas, A. Microstructures and crystallographic preferred orientation of anorthosites from Oman ophiolite and the dynamics of melt lenses. Tectonics 2011, 30, TC2011. [Google Scholar] [CrossRef]
- Boudier, F.; Nicolas, A.; Ildefonse, B. Magma chambers in the Oman ophiolite: Fed from the top or from the bottom? Earth Planet. Sci. Lett. 1996, 144, 239–250. [Google Scholar] [CrossRef]
- Kapsiotis, A.; Ewing-Rassios, A.; Grieco, G.; Antonelou, A. Genesis of Cr bearing hydrogrossular-rich veins in a chromitite boulder from Ayios Stefanos, West Othris, Greece: A paradigm of micro-rodingites formation at the late stages of oceanic slab emplacement. Ore Geol. Rev. 2017, 90, 287–306. [Google Scholar] [CrossRef]
- Zhang, K.J.; Li, Q.H.; Yan, L.L.; Zeng, L.; Lu, L.; Zhang, Y.X.; Hui, J.; Jin, X.; Tang, X.C. Geochemistry of limestones deposited in various plate tectonic settings. Earth Sci. Rev. 2017, 167, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Mullen, E.D. MnO–TiO2–P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett. 1983, 62, 53–62. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H.; Shallo, M. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 2008, 100, 174–209. [Google Scholar] [CrossRef]
- Dilek, Y.; Thy, P. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyansubduction factories. Lithos 2009, 113, 68–87. [Google Scholar] [CrossRef]
- Godard, M.; Dautria, J.M.; Perrin, M. Geochemical variability of the Oman ophiolite lavas: Relationship with spatial distribution and paleomagnetic directions. Geochem. Geophys. Geosyst. 2003, 4, 8609. [Google Scholar] [CrossRef]
- Shinjo, R.; Chung, S.L.; Kato, Y.; Kimura, M. Geochemical and Sr–Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. J. Geophys. Res. Solid Earth 1999, 104, 10591–10608. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of the late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geoth. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Saccani, E.; Photiades, A.; Beccaluva, L. Petrogenesis and tectonic significance of Jurassic IAT magma types in the Hellenide ophiolites as deduced from the Rhodiani ophiolites (Pelagonian zone, Greece). Lithos 2008, 104, 71–84. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical Geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Wilson, M.B. Igneous Petrogenesis, A Global Tectonic Approach; Springer Science & Business Media: Berlin, Germany, 1989; pp. 1–466. [Google Scholar]
- Belousova, E.A.; Jiménez, J.M.G.; Graham, I.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.; Martin, L.; Craven, S.; Talavera, C. The enigma of crustal zircons in uppermantle rocks: Clues from the Tumut ophiolite, southeast Australia. Geology 2015, 43, 119–122. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Lesher, C.M.; Keays, R.R.; Zhang, C.J.; Malpas, J. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan province, SW China. J. Petrol. 2005, 46, 2253–2280. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, B.D.; Liu, H.; Wang, L.Q.; Chen, L. The Late Jurassic high-Mg andesites in the Daru Tso area, Tibet: Evidence for the subduction of the Bangong Co-Nujiang River oceanic lithosphere. Geol. Bull. China 2015, 34, 251–261. [Google Scholar]
- Zeng, Y.C.; Chen, J.L.; Xu, J.F.; Wang, B.D.; Huang, F. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochem. Geophys. Geosyst. 2016, 17, 4859–4877. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.S.; Shi, R.D.; Ding, B.H.; Liu, D.L.; Zhang, X.R.; Fan, S.Q.; Zhi, X.C. Re–Os isotopic evidence of MOR-type ophiolite from the Bangong Co for the opening of Bangong-Nujiang Tethys Ocean. Acta Petrol. Mineral. 2012, 31, 465–478, (In Chinese with English Abstract). [Google Scholar]
- Qin, Y.D.; Li, D.W.; Liu, D.M.; Li, H.L. Opening Time of Middle Tethys Oceanic Basin: Constrained from Zircon U–Pb Dating of MOR-type Gabbro in Bangong Lake Ophiolite. Geotecton. Metallog. 2017, 41, 1148–1157. [Google Scholar]
- Hao, L.L.; Wang, Q.; Wyman, D.A.; Ou, Q.; Dan, W.; Jiang, Z.Q.; Wu, F.Y.; Yang, J.H.; Long, X.P.; Li, J. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos 2016, 245, 223–242. [Google Scholar] [CrossRef]
- Shi, R.D.; Griffin, W.L.; O’Reilly, S.Y.; Huang, Q.S.; Zhang, X.R.; Liu, D.L.; Zhi, X.C.; Xia, Q.X.; Ding, L. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re–Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Res. 2012, 21, 194–206. [Google Scholar] [CrossRef]
- Sun, L.X.; Bai, Z.D.; Xu, D.B.; Li, H.K.; Song, B. Geological Characteristics and Zircon U–Pb SHRIMP Dating of the Plagiogranite in Amduo ophiolites, Tibet. Geol. Surv. Res. 2011, 34, 10–15. [Google Scholar]
- Xia, B.; Xu, L.F.; Wei, Z.Q.; Zhang, Y.Q.; Wang, R.; Li, J.F.; Wang, Y.B. SHRIMP zircon dating of gabbro from the Donqiao ophiolite in Tibet and its geological implications. Acta Geol. Sin. 2008, 82, 528–531. [Google Scholar]
- Liu, T.; Zhai, Q.G.; Wang, J.; Bao, P.S.; Qiangba, Z.X.; Tang, S.H.; Tang, Y. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan plateau: Evidence from zircon dating, petrological, geochemical and Sr–Nd–Hf isotopic characterization. J. Asian Earth Sci. 2016, 116, 139–154. [Google Scholar] [CrossRef]
- Huang, Q.T.; Li, J.F.; Cai, Z.R.; Xia, L.Z.; Yuan, Y.J.; Liu, H.C.; Xia, B. Geochemistry, Geochronology, Sr–Nd Isotopic Compositions of Jiang Tso Ophiolite in the Middle Segment of the Bangong-Nujiang Suture Zone and Their Geological Significance. Acta Geol. Sin. (Engl. Ed.) 2015, 89, 389–401. [Google Scholar]
- Huang, Q.T.; Li, J.F.; Xia, B.; Yin, Z.X.; Zheng, H.; Shi, X.L.; Hu, X.C. Petrology, geochemistry, chronology and geological significance of JiangTso ophiolite in middle segment of Bangonghu-Nujiang suture zone, Tibet. Earth Sci. J. China Univ. Geosci. 2015, 40, 34–48. [Google Scholar]
- Huang, Q.S.; Shi, R.D.; Liu, D.L.; Zhang, X.R.; Fan, S.Q.; Ding, L. Os isotopic evidence for a carbonaceous chondritic mantle source for the Nagqu ophiolite from Tibet and its implications. Chin. Sci. Bull. 2012, 58, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Li, C.; Xu, M.J.; Wu, Y.W.; Fan, J.J.; Wu, H. Petrology, geochemistry, and geochronology of boninitic dikes from the Kangqiong ophiolite: Implications for the Early Cretaceous evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet. Int. Geol. Rev. 2015, 57, 2028–2043. [Google Scholar] [CrossRef]
- Xu, R.H.; Schärer, U.; Allègre, C.J. Magmatism and Metamorphism in the Lhasa Block (Tibet): A Geochronological Study. J. Geol. 1985, 93, 41–57. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Li, J.X.; Liu, C.Z. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Haider, V.L.; Dunkl, I.; Eynatten, H.V.; Ding, L.; Frei, D.; Zhang, L. Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau. J. Asian Earth Sci. 2013, 70–71, 79–98. [Google Scholar] [CrossRef]
- Sui, Q.L.; Wang, Q.; Zhu, D.C.; Zhao, Z.D.; Chen, Y.; Santosh, M.; Hu, Z.C.; Yuan, H.L.; Mo, X.X. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos 2013, 168–169, 144–159. [Google Scholar] [CrossRef]
- Volkmer, J.E.; Kapp, P.; Horton, B.K.; Gehrels, G.E.; Minervini, J.M.; Ding, L. Northern Lhasa thrust belt of central Tibet: Evidence of Cretaceous-early Cenozoic shortening within a passive roof thrust system? Geol. Soc. Am. Spec. Pap. 2014, 507, 59–70. [Google Scholar]
- Huang, Q.T.; Cai, Z.R.; Xia, B.; Li, J.F.; Xia, L.Z.; Liu, H.C. Geochronology, geochemistry, and Sr–Nd–Pb isotopes of Cretaceous granitoids from western Tibet: Petrogenesis and tectonic implications for the evolution of the Bangong Meso-Tethys. Int. Geol. Rev. 2016, 58, 95–111. [Google Scholar] [CrossRef]
- Kapp, P.; Yin, A.; Harrison, T.M.; Ding, L. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 2005, 117, 864–878. [Google Scholar] [CrossRef]
- Pullen, A.; Kapp, P.; Gehrels, G.E.; Ding, L.; Zhang, Q.H. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Geol. Soc. Am. Bull. 2011, 123, 585–600. [Google Scholar] [CrossRef]
- Fan, J.J.; Li, C.; Xie, C.M.; Wang, M.; Chen, J.W. The evolution of the Bangong-Nujiang Neo-Tethys ocean: Evidence from zircon U–Pb and Lu–Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites. Tectonophysics 2015, 655, 27–40. [Google Scholar] [CrossRef]
- Hao, L.L.; Wang, Q.; Wyman, D.A.; Ou, Q.; Dan, W.; Jiang, Z.Q.; Yang, J.H.; Li, J.; Long, X.P. Andesitic crustal growth via mélange partial melting: Evidence from Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet. Geochem. Geophys. Geosyst. 2016, 17, 1641–1659. [Google Scholar] [CrossRef]
- He, H.Y.; Li, Y.L.; Wang, C.S.; Zhou, A.; Qian, X.Y.; Zhang, J.W.; Du, L.T.; Bi, W.J. Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: Petrogenetic and tectonic implications. Lithos 2018, 302, 389–404. [Google Scholar] [CrossRef]
- Li, S.M.; Wang, Q.; Zhu, D.C.; Stern, R.J.; Cawood, P.A.; Sui, Q.L.; Zhao, Z. One or two Early Cretaceous arc systems in the Lhasa Terrane, southern Tibet. J. Geophys. Res. Solid Earth 2018, 123, 3391–3413. [Google Scholar] [CrossRef]
- Liu, D.L.; Huang, Q.S.; Fan, S.Q.; Zhang, L.Y.; Shi, R.D.; Ding, L. Subduction of the Bangong-Nujiang Ocean: Constraints from granites in the Bangong Co area, Tibet. Geol. J. 2014, 49, 188–206. [Google Scholar] [CrossRef]
- Liu, D.L.; Shi, R.D.; Ding, L.; Zou, H.B. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet. Lithos 2018, 296, 452–470. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, D.C.; Zhao, Z.D.; Liu, S.A.; Chung, S.L.; Li, S.M.; Liu, D.; Dai, J.G.; Wang, L.Q.; Mo, X.X. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos 2014, 198, 24–37. [Google Scholar] [CrossRef]
- Fan, J.J.; Li, C.; Xie, C.M.; Wang, M. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. Int. Geol. Rev. 2014, 56, 1504–1520. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Huang, Q.; Zhou, R.; Kapsiotis, A.; Xia, B.; Ren, Z.; Cai, Z.; Lu, X.; Cheng, C. Geochemistry and Geochronology of Ophiolitic Rocks from the Dongco and Lanong Areas, Tibet: Insights into the Evolution History of the Bangong-Nujiang Tethys Ocean. Minerals 2019, 9, 466. https://doi.org/10.3390/min9080466
Yang P, Huang Q, Zhou R, Kapsiotis A, Xia B, Ren Z, Cai Z, Lu X, Cheng C. Geochemistry and Geochronology of Ophiolitic Rocks from the Dongco and Lanong Areas, Tibet: Insights into the Evolution History of the Bangong-Nujiang Tethys Ocean. Minerals. 2019; 9(8):466. https://doi.org/10.3390/min9080466
Chicago/Turabian StyleYang, Peng, Qiangtai Huang, Renjie Zhou, Argyrios Kapsiotis, Bin Xia, Zhanli Ren, Zhourong Cai, Xingxin Lu, and Chiyu Cheng. 2019. "Geochemistry and Geochronology of Ophiolitic Rocks from the Dongco and Lanong Areas, Tibet: Insights into the Evolution History of the Bangong-Nujiang Tethys Ocean" Minerals 9, no. 8: 466. https://doi.org/10.3390/min9080466