Next Article in Journal / Special Issue
Petrology and Geochemistry of the Harlan, Kellioka, and Darby Coals from the Louellen 7.5-Minute Quadrangle, Harlan County, Kentucky
Previous Article in Journal / Special Issue
Modes of Occurrence of Fluorine by Extraction and SEM Method in a Coal-Fired Power Plant from Inner Mongolia, China
Article Menu

Export Article

Open AccessArticle
Minerals 2015, 5(4), 870-893; doi:10.3390/min5040531

Major and Trace Element Geochemistry of Coals and Intra-Seam Claystones from the Songzao Coalfield, SW China

1
State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
2
College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
3
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia
*
Author to whom correspondence should be addressed.
Academic Editor: Antonio Simonetti
Received: 19 October 2015 / Revised: 19 November 2015 / Accepted: 25 November 2015 / Published: 3 December 2015
(This article belongs to the Special Issue Minerals in Coal)
View Full-Text   |   Download PDF [4518 KB, uploaded 3 December 2015]   |  

Abstract

Silicic, mafic and alkali intra-seam tonsteins have been known from SW China for a number of years. This paper reports on the geochemical compositions of coals and tonsteins from three seam sections of the Songzao Coalfield, SW China, and evaluates the geological factors responsible for the chemical characteristics of the coal seams, with emphasis on the influence from different types of volcanic ashes. The roof and floor samples of the Songzao coal seams mostly have high TiO2 contents, consistent with a high TiO2 content in the detrital sediment input from the source region, namely mafic basalts from the Kangdian Upland on the western margin of the coal basin. The coals from the Songzao Coalfield generally have high ash yields and are highly enriched in trace elements including Nb, Ta, Zr, Hf, rare earth elements (REE), Y, Hg and Se; some variation occurs among different seam sections due to input of geochemically different volcanic ash materials. The geochemistry of the Songzao coals has also been affected by the adjacent tonstein/K-bentonite bands. The relatively immobile elements that are enriched in the altered volcanic ashes also tend to be enriched in the adjacent coal plies, possibly due to leaching by groundwaters. The coals near the alkali tonstein bands in the Tonghua and Yuyang sections of the Songzao Coalfield are mostly high in Nb, Ta, Zr, Hf, Th, U, REE and Y. Coal samples overlying the mafic K-bentonite in the Tonghua section are high in V, Cr, Zn and Cu. The Datong coal, which has neither visible tonstein layers nor obvious volcanogenic minerals, has high TiO2, V, Cr, Ni, Cu and Zn concentrations in the intervals between the coal plies affected by mafic and alkaline volcanic ashes. This is consistent with the suggestion that a common source material was supplied to the coal basin, derived from the erosion of mafic basaltic rocks of the Kangdian Upland. Although the Songzao coal is generally a high-sulfur coal, most of the chalcophile trace elements show either poor or negative correlations with total iron sulfide contents. The absence of traditional pyrite-metal associations may reflect wide variations in the concentrations of these elements in individual pyrite/marcasite components, or simply poor retention of these elements in the pyrite/marcasite of the relevant coals. View Full-Text
Keywords: geochemistry; coal; rare earth elements; volcanic ash; Late Permian geochemistry; coal; rare earth elements; volcanic ash; Late Permian
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Major and Trace Element Geochemistry of Coals and Intra-Seam Claystones from the Songzao Coalfield, SW China. Minerals 2015, 5, 870-893.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top