Mineralogical, Geochronological, and Geochemical Characteristics of Early Cretaceous Granite in South China: Implications for Tectonic Evolution and REE Mineralization
Abstract
:1. Introduction
2. Regional Geological Setting
3. Analytical Methods
4. Results
4.1. Geochemical Characteristics
4.2. Compositions of Biotite
4.3. Zircon U-Pb Geochronology
5. Discussion
5.1. Formation Age of the Huashan–Guposhan Pluton
5.2. Rock Type
5.3. Tectonic Significance
5.4. Granitic Magmatism and REE Mineralization
6. Conclusions
- (1)
- LA–ICP–MS zircon U–Pb dating results showed that granites from the Xinlu pluton in northeastern Guangxi signaled an early Cretaceous age (ca. 141 Ma), indicating that early Cretaceous magmatism occurred in inland areas of South China.
- (2)
- The granites belong to A-type granite and likely formed in a back-arc extensional environment in response to the increased subduction angle of the Paleo-Pacific plate.
- (3)
- They had high REE contents (>451 ppm), especially the fine-grained granites showing higher HREE contents, lower LREE contents, and lower LREE/HREE ratios than the coarse-grained granites.
- (4)
- Strong hydrothermal alteration and magma differentiation, which can affect activation and mobilization of REE, might have played an important role in REE enrichment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, F.; Zhang, G.L.; Yan, W.; Zhang, J.; Yao, J.H. Subduction of the paleo-Pacific plate recorded by arc volcanism in the South China Sea margin. Gondwana Res. 2022, 110, 58–72. [Google Scholar] [CrossRef]
- Qiu, L.; Li, X.; Li, X.W.; Yan, D.P.; Ren, M.H.; Zhang, L.L.; Cheng, G.S. Petrogenesis of early cretaceous intermediate to felsic rocks in Shanghai, South China: Magmatic response to Paleo-Pacific plate subduction. Tectonophysics 2022, 838, 229469. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Zhang, X.B.; Wang, G.Q. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China. Lithos 2021, 384–385, 105985. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.W.; Jian, P.; Zhao, Z.H.; Xiong, X.L.; Bao, Z.W.; Xu, J.F.; Li, C.F.; Ma, J.L. Alkaline syenites in eastern Cathaysia (South China): Link to Permian-Triassic transtension. Earth Planet. Sci. Lett. 2005, 230, 339–354. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, T.; Shen, W.; Shu, L.; Niu, Y. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogeny and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Deng, J.; Yang, X.Y.; Zartman, R.E.; Qi, H.; Qi, H.S.; Zhang, L.P.; Liu, H.; Zhang, Z.F.; Mastoi, A.S.; Berador, A.E.G.; et al. Early Cretaceous transformation from Pacific to Neo-Tethys subduction in the SW Pacific Ocean: Constraints from Pb-Sr-Nd-Hf isotopes of the Philippine arc. Geochim. Cosmochim. Acta 2020, 285, 21–40. [Google Scholar] [CrossRef]
- Sun, W.D.; Ding, X.; Hu, Y.H.; Li, X.H. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sci. Lett. 2007, 262, 533–542. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Morgan, J.P.; Morgan, J.W.; Staudigel, H. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett. 2001, 185, 237–252. [Google Scholar] [CrossRef]
- Sharp, W.D.; Clague, D.A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science 2006, 313, 1281–1284. [Google Scholar] [CrossRef]
- Zhu, J.C.; Zhang, P.H.; Xie, C.F.; Zhang, H.; Yang, C. Magma mixing origin of the mafic enclaves in Lisong Granite, NE Guangxi, western Nanling Mountains. Geochimica 2006, 35, 506–516, (In Chinese with English Abstract). [Google Scholar]
- Zhao, K.D.; Jiang, S.Y.; Zhu, J.C.; Li, L.; Dai, B.Z.; Jiang, Y.H.; Ling, H.F. Hf isotopic composition of zircons from the Huashan-Guposhan intrusive complex and their mafic enclaves in northeastern Guangxi: Implication for petrogenesis. Chin. Sci. Bull. 2009, 6, 509–519. [Google Scholar] [CrossRef]
- Li, X.F.; Feng, Z.H.; Xiao, R.; Song, C.A.; Yang, F.; Wang, C.Y.; Kang, Z.Q.; Mao, W. Spatial and Temporal Distributions and the Geological Setting of the W-Sn-Mo-Nb-Ta Deposits at the Northeast Guangxi, Southe China. Acta Geol. Sin. 2012, 86, 1714–1725, (In Chinese with English Abstract). [Google Scholar]
- Zhu, J.C.; Xie, C.F.; Zhang, P.H.; Yang, C.; Gu, S.Y. Niumiao and Tong’an intrusive bodies of NE Guangxi: Petrology zircon SHRIMP U-Pb geochronology and geochemistry. Acta Petrol. Sin. 2005, 21, 665–676, (In Chinese with English Abstract). [Google Scholar]
- Gu, S.Y.; Hua, R.M.; Qi, H.W. Study on Zircon LA-ICP-MS U-Pb Dating and Sr-Nd Isotope of the Guposhan Granite in Guangxi. Acta Geol. Sin. 2006, 80, 543–553, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Shu, X.J.; Wang, X.L.; Sun, T.; Chen, W.F.; Shen, W.Z. Crustal formation in the Nanling Range, South China Block: Hf isotope evidence of zircons from Phanerzoic granitoids. J. Asian Earth Sci. 2013, 74, 210–224. [Google Scholar] [CrossRef]
- Cai, Y.F.; Wang, Y.J.; Cawood, P.A.; Fan, W.M.; Liu, H.C.; Xing, X.W.; Zhang, Y.Z. Neoproterozoic subduction along the Ailaoshan zone, South China: Geochronological and geochemical evidence from amphibolite. Precambrian Res. 2014, 245, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Wang, Y.J.; Cawood, P.A.; Zhang, Y.Z.; Zhang, A.M. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone. Precambrian Res. 2015, 266, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Liu, H.C.; Feng, Z.H.; Zhou, Y.; Liu, X.J.; Wang, Z.L.; Ma, L.Y.; Li, Z.L.; Xu, J.F. Neoproterozoic active margin of the SW South China Block: Constraints from U-Pb ages, Sr-Nd isotopes and geochemical data for the gabbro and granodiorite along the Ailaoshan tectonic belt. Lithos 2020, 358–359, 105387. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, X.Q.; Wu, S.C.; Cai, Y.F.; Liang, X.R.; Shao, T.B.; Wang, C.; Fu, J.G.; Jiang, Y. Isotopic geochemistry, zircon U–Pb ages and Hf isotopes of A-type granites from the Xitian W–Sn deposit, SE China: Constraints on petrogenesis and tectonic significance. J. Asian Earth Sci. 2015, 105, 122–139. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, X.Q.; Kröner, A.; Cai, Y.F.; Shao, T.B.; Wen, S.N.; Jiang, Y.; Fu, J.G.; Wang, C.; Dong, C.G. Late Cretaceous lithospheric extension in SE China: Constraints from volcanic rocks in Hainan Island. Lithos 2015, 232, 100–110. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, G.W.; Zhang, Y.H. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Liu, H.C.; Xia, X.P.; Lai, C.K.; Gan, C.S.; Zhou, Y.; Huangfu, P.P. Break–away of South China from Gondwana: Insights from the Silurian high–Nb basalts and associated magmatic rocks in the Diancangshan–Ailaoshan fold belt (SW China). Lithos 2018, 318–319, 194–208. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, S.Y.; Feng, Z.H.; Xu, C.; Cai, Y.F.; Liang, X.Q.; Liu, X.J.; Du, Y.J. A new insight into the eastern extension of the Proto-Tethyan margin of Gondwana by Early Paleozoic volcanic rocks in South China. Lithos 2021, 398–399, 106328. [Google Scholar] [CrossRef]
- Feng, Z.H.; Wang, C.Z.; Liang, J.C.; Li, J.Z.; Huang, Y.G.; Liao, J.F.; Wang, R. The emplacement mechanisms and growth styles of the Guposhan-Huashan batholith in western Nanling Range, South China. Sci. China Earth Sci. 2011, 54, 45–60, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhu, J.C.; Zhang, P.H.; Xie, C.F.; Zhang, H.; Yang, C. The Huashan-Guposhan A-type granitoid belt in the western part of the Nanling Mountains: Petrology, geochemistry and genetic interpretations. Acta Geol. Sin. 2006, 80, 529–542, (In Chinese with English Abstract). [Google Scholar]
- Zhu, J.C.; Zhang, P.H.; Xie, C.F.; Zhang, H.; Yang, C. Zircon U-Pb age framework of Huashan-Guposhan intrusive belt, western part of Nanling Range, and its geological significance. Acta Petrol. Sin. 2006, 22, 2270–2278, (In Chinese with English Abstract). [Google Scholar]
- Wang, R.C.; Xie, L.; Chen, J.; Yu, A.P.; Wang, L.B.; Lu, J.J.; Zhu, J.C. Tin-carrier minerals in metaluminous granites of the western Nanling Range (southern China): Constraints on processes of tin mineralization in oxidized granites. J. Asian Earth Sci. 2013, 74, 361–372. [Google Scholar] [CrossRef]
- Cai, Y.F.; Feng, Z.H.; Shao, T.B.; Hu, R.G.; Zhou, Y.; Xu, J.F. New precise zircon U-Pb and muscovite 40Ar-39Ar geochronology of the Late Cretaceous W-Sn mineralization in the Shanhu orefield, South China. Ore Geol. Rev. 2017, 84, 338–346. [Google Scholar] [CrossRef]
- Yu, Y.; Li, X.F.; Xiao, R.; Mao, W.; Jia, Y.Z. Zircon LA-ICP-MS U-Pb and Sericite 40Ar/39Ar Ages at Shanhu W-Sn Deposit, Guangxi Province, China, and its Implications for W-Sn Minerlization. Acta Mineral. Sin. 2014, 34, 297–304, (In Chinese with English Abstract). [Google Scholar]
- Feng, Z.H.; Liang, J.C.; Zhang, G.L.; Li, X.F.; Deng, J.X. On the lithodemic units of Mesozoic granitoid in east Guangxi: A case from Guposhan-Huashan granitic pluton. J. Guilin Inst. Technol. 2002, 22, 333–340, (In Chinese with English Abstract). [Google Scholar]
- Lu, X.P.; Lu, X.Z.; Geng, M.W.; Lu, Q.F.; Shi, S.D. Geological characteristics and genesis of the Guposhan tin orefield in Guangxi. Geol. Miner. Resour. South China 2005, 2, 53–60, (In Chinese with English Abstract). [Google Scholar]
- Feng, Z.H. Emplacement Process and Structural Analysis of Gupushan-Huashan Granitic Pluton, Guangxi. Ph.D. Thesis, Central South University, Changsha, China, 2003. (In Chinese with English Abstract). [Google Scholar]
- Cai, Y.F.; Liu, F.L.; Feng, Z.H.; Zhou, Y.; Zeng, C.Y. Mineral Compositional and Chronological Characteristics of Guposhan Pluton in Guangxi and Its Petrogenetic and Metallogenic Significance. J. Jilin Univ. 2020, 50, 842–856, (In Chinese with English Abstract). [Google Scholar]
- Cai, Y.F.; Ma, Y.C.; Zhou, Y.; Su, X.Q.; Feng, Z.H.; Ma, L.H.; Hu, R.G. Characteristics of mineralogy, geochronology and geochemistry of the granite in Huashan, Guangxi and its tectonic implication. Geol. Explor. 2018, 54, 940–956, (In Chinese with English Abstract). [Google Scholar]
- Yuan, H.Q.; Li, S.H.; Cheng, F.; Pei, Q.M.; Zhang, Y.J.; Sun, M.H.; Zhang, H.Y. Weathered material granularity and geochemistry of weathering crust in ion-adsorption type REE deposit: A case from Yangminchong of Guposhan. J. Guilin Univ. Technol. 2015, 35, 243–250, (In Chinese with English Abstract). [Google Scholar]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials: Geostandards Newsletter. J. Geostand. Geoanal. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Günther, D.; Wu, F.Y. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 1–71. [Google Scholar]
- Li, X.H.; Qi, C.S.; Liu, Y.; Liang, X.R.; Tu, X.L. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chin. Sci. Bull. 2005, 50, 2481–2486. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.C.; Li, X.H. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica 1996, 25, 552–558, (In Chinese with English Abstract). [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond., Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Rieder, M.; Cavazzini, G.; D’Yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guggenheim, S.; Koval’, P.V.; Müller, G.; Neiva, A.M.R.; Radoslovich, E.W.; et al. Nomenclature of the Micas. Mineral. Mag. 1999, 63, 267–279. [Google Scholar] [CrossRef]
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Zhu, J.C.; Li, X.D.; Shen, W.Z.; Wang, Y.X.; Yang, J.D. Sr, Nd and O isotope studies on the genesis of the Huashan granite complex. Acta Geol. Sin. 1989, 63, 225–235, (In Chinese with English Abstract). [Google Scholar]
- Li, X.H.; Chung, S.L.; Zhou, H.W.; Lo, C.H.; Liu, Y.; Chen, C.H. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Geol. Soc. Lond. Spec. Publ. 2004, 226, 193–215. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas–petrogenetic issues, models and evidence. Earth-Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Clemens, J.D.; Holloway, J.R.; White, A.J.R. Origin of an A-type granite: Experimental constraints. Am. Mineral. 1986, 71, 317–324. [Google Scholar]
- Gan, C.S.; Wang, Y.J.; Cai, Y.F.; Liu, H.C.; Zhang, Y.Z.; Song, Q.Q.; Guo, X.F. The petrogenesis and tectonic implication of Wengong intrusion in the Nanling Range. Earth Sci. 2016, 41, 17–34, (In Chinese with English Abstract). [Google Scholar]
- Fu, J.M.; Ma, C.Q.; Xie, C.F.; Zhang, Y.M.; Peng, S.B. Ascertainment of the Jinjiling aluminous A-type granite, Hunan Provice and its tectonic setting. Geochimica 2005, 34, 215–226, (In Chinese with English Abstract). [Google Scholar]
- Jiang, S.Y.; Zhao, K.D.; Jiang, Y.H.; Dai, B.Z. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geol. J. China Univ. 2008, 14, 496–509, (In Chinese with English Abstract). [Google Scholar]
- Xiao, E.; Qiu, J.S.; Xu, X.S.; Jiang, S.Y.; Hu, J.; Li, Z. Geochronology and geochemistry of the Yaokeng alkaline granitic pluton in Zhejiang province: Petrogenetic and tectonic implications. Acta Petrol. Sin. 2007, 23, 1431–1440, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Y.H.; Jiang, S.Y.; Zhao, K.D.; Ling, H.F. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-arc extension setting. Geol. Mag. 2006, 143, 457–474. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.H.; Jiang, S.Y.; Dai, B.Z. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: Implications for a continental arc to rifting. Lithos 2009, 107, 185–204. [Google Scholar] [CrossRef]
- Hu, J.; Qiu, J.S.; Wang, D.Z.; Wang, R.C.; Zhang, X.L. Comparative Investigations of A-type Granites in the Coastal and the Nanling Inland Areas of SE China, and Their Tectonic Significances. Geol. J. China Univ. 2005, 11, 404–414, (In Chinese with English Abstract). [Google Scholar]
- Qiu, J.S.; Wang, D.Z.; Brent, I.A.M. Geochemistry and petrogenesis of the I- and A-type composite granite masses in the coastal area of Zhejiang and Fujian province. Acta Petrol. Sin. 1999, 15, 237–246, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.Q.; Xu, X.B.; Jia, D.; Shu, L.S. Deformation record of the change from Indosinian collision related tectonic system to Yanshanian subduction related tectonic system in South China during the Early Mesozoic. Earth Sci. Front. 2009, 16, 234–247, (In Chinese with English Abstract). [Google Scholar]
- Xu, X.B.; Zhang, Y.Q.; Jia, D.; Shu, L.S.; Wang, R.R. Early Mesozoic geotectonic processes in South China. Geol. China 2009, 36, 573–593, (In Chinese with English Abstract). [Google Scholar]
- Shu, L.S. An analysis of principal features of tectonic evolution in South China Block. Geol. Bull. China 2012, 31, 1035–1053, (In Chinese with English Abstract). [Google Scholar]
- Uyeda, S.; Miyashir, A. Plate tectonics and Japanese-islands: Synthesis. Geol. Soc. Am. Bull. 1974, 85, 1159–1170. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Guo, F. Geochemistry of early Mesozoic potassium-rich diorites-granodiorites in Southeastern Hunan Province, South China: Petrogenesis and tectonic implications. Geochem. J. 2003, 37, 427–448. [Google Scholar] [CrossRef]
- Zhu, W.G.; Zhong, H.; Li, X.H.; He, D.F.; Song, X.Y.; Ren, T.; Chen, Z.Q.; Sun, H.S.; Liao, J.Q. The early Jurassic mafic-ultramafic intrusion and A-type granite from northeastern Guangdong, SE China: Age, origin, and tectonic significance. Lithos 2010, 119, 313–329. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, Y.Q.; Dong, S.W.; Johnston, S.T. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth Sci. Rev. 2014, 134, 98–136. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wang, D.H.; Bagas, L.; Chen, Z.Y. Geochemical and REE mineralogical characteristics of the Zhaibei Granite in Jiangxi Province, southern China, and a model for the genesis of ion-adsorption REE deposits. Ore Geol. Rev. 2022, 140, 104579. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.B.; Huizenga, J.M.; Zhang, Q.B.; Yang, Y.Y.; Yan, S.; Yang, W.B.; Niu, H.C. Granitic magma evolution to magmatic-hydrothermal processes vital to the generation of HREEs ion-adsorption deposits: Constraints from zircon texture, U-Pb geochronology, and geochemistry. Ore Geol. Rev. 2022, 146, 104931. [Google Scholar] [CrossRef]
- Huang, Y.F.; He, H.P.; Liang, X.L.; Bao, Z.W.; Tan, W.; Ma, L.Y.; Zhu, J.X.; Huang, J.; Wang, H. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geol. Rev. 2021, 135, 104173. [Google Scholar] [CrossRef]
- Ishihara, S.; Murakami, H. Fractionated ilmenite-series granites in Southwest Japan: Source magma for REE-Sn-W mineralizations. Resour. Geol. 2006, 56, 245–256. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Liu, Z.; Zhu, X.L. Comparison in the Characteristics and Related Metallogeny between Heavy Rare Earth in Dabu and Zudong, Southern JiangXi, China. Collect. Pap. Geol. Soc. Jiangxi Prov. 2020, I, 170–180, (In Chinese with English Abstract). [Google Scholar]
- Patiño, D.A.E. Titanium Substitution in Biotite: An Empirical Model with Applications to Thermometry, O2 and H2O Barometries, and Consequences for Biotite Stability. Chem. Geol. 1993, 108, 133–162. [Google Scholar]
- Henry, D.J.; Guidotti, C.V.; Thomson, J.A. The Ti-saturation surface for low-to-medium pressure metapelities biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Mineral. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Nachit, H.; Ibhi, A.; Abia, E.H.; Ohoud, M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Bern, C.R.; Yesavage, T.; Foley, N.K. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration. J. Geochem. Explor. 2017, 172, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Sanematsu, K.; Kon, Y.; Imai, A.; Watanabe, K.; Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Min. Depos. 2013, 48, 437–451. [Google Scholar] [CrossRef]
- Vieira, C.C.; Botelho, N.F.; Garnier, J. Geochemical and mineralogical characteristics of REEY occurrences in the Mocambo Granitic Massif tin-bearing A-type granite, central Brazil, and its potential for ion-adsorption-type REEY mineralization. Ore Geol. Rev. 2019, 105, 467–486. [Google Scholar] [CrossRef]
Pluton | Xinlu | Guposhan | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Fine-Grained Granite | Coarse-Grained Granite | Granite | |||||||||
Sample | HZ11 | HZ12A | HZ12B | HZ13A | HZ13B | HZ14 | 1013-1 | 1007-1 | 308 | 250 | 227 | 352 |
SiO2 | 73.21 | 73.97 | 72.38 | 74.80 | 73.90 | 73.64 | 73.83 | 75.99 | 74.16 | 73.18 | 74.45 | 75.22 |
TiO2 | 0.14 | 0.14 | 0.14 | 0.07 | 0.06 | 0.06 | 0.10 | 0.13 | 0.18 | 0.35 | 0.17 | 0.28 |
Al2O3 | 11.97 | 12.12 | 11.86 | 14.50 | 13.51 | 13.47 | 12.11 | 12.26 | 12.52 | 13.29 | 13.36 | 11.86 |
Fe2O3T | 3.62 | 3.64 | 3.60 | 1.00 | 1.14 | 1.14 | 0.68 | 0.84 | 1.16 | 0.44 | 0.92 | 0.43 |
MgO | 0.10 | 0.11 | 0.10 | 0.09 | 0.09 | 0.10 | 0.41 | 0.15 | 0.13 | 0.42 | 0.15 | 0.31 |
CaO | 1.65 | 1.65 | 1.64 | 0.88 | 1.03 | 1.03 | 0.61 | 0.74 | 0.87 | 1.77 | 0.96 | 1.10 |
K2O | 3.54 | 3.58 | 3.52 | 4.65 | 5.48 | 5.47 | 5.16 | 5.22 | 5.00 | 4.86 | 5.04 | 3.87 |
Na2O | 3.94 | 4.03 | 3.92 | 2.91 | 3.52 | 3.51 | 5.40 | 3.28 | 3.45 | 3.10 | 3.77 | 2.86 |
MnO | 0.09 | 0.09 | 0.09 | 0.04 | 0.04 | 0.04 | 0.02 | 0.03 | 0.04 | 0.06 | 0.04 | 0.07 |
P2O5 | / | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.05 | 0.09 | 0.07 | 0.07 |
LOI | 1.10 | 0.54 | 0.74 | 0.82 | 0.44 | 0.76 | / | / | / | 0.55 | 0.41 | 1.78 |
Total | 99.36 | 99.89 | 98.00 | 99.77 | 99.24 | 99.23 | 98.35 | 98.66 | 97.56 | 98.12 | 99.34 | 97.85 |
Ga | 44.2 | 43.1 | 43.6 | 34.0 | 30.5 | 30.3 | 33.7 | 29.5 | 23.7 | 21.5 | 24.3 | 20.1 |
Rb | 624 | 610 | 614 | 559 | 496 | 493 | 365 | 391 | / | 242 | 348 | 234 |
Sr | 4.74 | 4.68 | 4.70 | 4.74 | 4.18 | 4.17 | 12.3 | 37.8 | 56.3 | 99.4 | 57.3 | 36.6 |
Zr | 749 | 728 | 735 | 440 | 395 | 417 | 172 | 166 | 86.7 | 106 | 113 | 75.0 |
Nb | 322 | 289 | 281 | 157 | 146 | 138 | 114 | 100 | 60.8 | 29.2 | 32.8 | 28.6 |
Cs | 71.0 | 68.4 | 70.2 | 26.1 | 23.4 | 23.0 | / | / | / | 18.3 | 14.5 | 9.41 |
Ba | 7.13 | 6.81 | 6.91 | 1.08 | 0.94 | 0.93 | 74.7 | 183 | 187 | 298 | 227 | 284 |
La | 18.4 | 17.2 | 16.1 | 41.1 | 39.7 | 39.8 | 190 | 51.3 | 51.6 | 51.2 | 53.6 | 51.9 |
Ce | 56.1 | 53.2 | 49.1 | 96.6 | 85.6 | 84.6 | 126 | 102 | 103 | 113 | 122 | 137 |
Pr | 10.6 | 10.2 | 9.3 | 12.9 | 11.5 | 11.2 | 47.6 | 13.3 | 12.7 | 12.2 | 12.9 | 12.2 |
Nd | 53.5 | 51.4 | 47.3 | 47.2 | 42.4 | 40.8 | 170 | 46.3 | 41.8 | 40.7 | 38.6 | 44.0 |
Sm | 26.9 | 25.7 | 23.8 | 14.6 | 13.5 | 12.7 | 40.8 | 10.8 | 8.57 | 9.43 | 8.31 | 9.74 |
Eu | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.72 | 0.52 | 0.58 | 0.96 | 0.62 | 0.72 |
Gd | 35.6 | 33.7 | 32.2 | 18.2 | 16.7 | 15.7 | 34.9 | 11.3 | 9.07 | 9.45 | 7.56 | 10.4 |
Tb | 10.2 | 9.68 | 9.18 | 4.35 | 4.00 | 3.76 | 5.98 | 2.11 | 1.75 | 1.52 | 1.19 | 1.81 |
Dy | 80.4 | 76.4 | 72.8 | 31.7 | 29.4 | 27.6 | 33.4 | 13.6 | 10.9 | 8.82 | 6.79 | 11.0 |
Ho | 18.4 | 17.5 | 16.7 | 6.98 | 6.43 | 6.14 | 6.04 | 2.82 | 2.17 | 1.69 | 1.33 | 2.14 |
Er | 64.3 | 61.8 | 58.8 | 22.5 | 20.8 | 20.0 | 15.9 | 8.28 | 6.27 | 4.59 | 3.81 | 5.92 |
Tm | 11.4 | 11.0 | 10.6 | 3.60 | 3.31 | 3.18 | 2.42 | 1.32 | 0.95 | 0.70 | 0.64 | 0.84 |
Yb | 81.9 | 79.7 | 75.4 | 23.4 | 21.4 | 20.8 | 14.2 | 8.25 | 5.86 | 4.72 | 4.55 | 5.36 |
Lu | 12.2 | 11.9 | 11.3 | 3.32 | 3.04 | 3.00 | 1.88 | 1.16 | 0.76 | 0.74 | 0.75 | 0.88 |
Y | 550 | 533 | 510 | 183 | 167 | 161 | 156 | 71.8 | 47.1 | 47.4 | 35.0 | 56.5 |
Hf | 20.9 | 18.9 | 18.7 | 13.0 | 11.5 | 12.3 | 5.42 | 5.68 | / | 4.26 | 4.53 | 3.62 |
Ta | 32.7 | 23.7 | 21.0 | 12.9 | 11.6 | 11.0 | 7.48 | 8.11 | <10 | 3.54 | 4.74 | 3.58 |
Th | 137 | 145 | 117 | 79.4 | 61.5 | 72.6 | 67.0 | 66.5 | 57.8 | 33.4 | 53.0 | 18.2 |
U | 134 | 161 | 158 | 53.1 | 69.5 | 71.4 | 17.5 | 24.8 | / | 11.0 | 14.3 | 7.4 |
∑HREE | 864 | 834 | 797 | 297 | 272 | 262 | 270 | 120.6 | 84.9 | 79.6 | 61.6 | 94.9 |
∑LREE | 166 | 158 | 146 | 212 | 193 | 189 | 575 | 224 | 218 | 228 | 236 | 256 |
∑REE | 1030 | 992 | 943 | 510 | 465 | 451 | 846 | 344 | 303 | 307 | 298 | 351 |
LREE/ HREE | 0.19 | 0.19 | 0.18 | 0.71 | 0.71 | 0.72 | 2.13 | 1.86 | 2.57 | 2.86 | 3.83 | 2.70 |
Zr + Nb + Ce + Y | 1678 | 1603 | 1575 | 877 | 793 | 801 | 568 | 440 | 297 | 296 | 303 | 298 |
10,000 × Ga/Al | 6.85 | 6.68 | 6.75 | 4.38 | 4.21 | 4.18 | 5.17 | 4.48 | 3.49 | 2.98 | 3.40 | 3.07 |
Pluton | Xinlu | Guposhan | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Fine-Grained Granite | Coarse-Grained Granite | Granite | ||||||||||||||||
SiO2 | 34.3 | 34.5 | 34.4 | 34.0 | 34.5 | 33.6 | 34.3 | 33.5 | 34.4 | 34.0 | 33.2 | 34.2 | 34.0 | 35.3 | 32.9 | 35.9 | 31.5 | 34.9 | 36.2 |
TiO2 | 1.01 | 0.94 | 1.03 | 1.04 | 1.07 | 1.21 | 1.92 | 1.54 | 0.35 | 0.39 | 0.53 | 0.44 | 0.12 | 3.00 | 2.81 | 3.38 | 2.69 | 3.32 | 3.59 |
Al2O3 | 14.9 | 15.2 | 15.0 | 15.0 | 15.0 | 14.9 | 14.4 | 14.1 | 18.7 | 18.5 | 18.7 | 19.3 | 19.0 | 14.3 | 14.5 | 14.4 | 12.9 | 13.5 | 14.1 |
FeOT | 35.4 | 35.7 | 35.1 | 35.5 | 35.4 | 36.4 | 34.8 | 34.7 | 43.8 | 43.4 | 41.0 | 42.3 | 42.7 | 29.3 | 31.1 | 29.5 | 25.8 | 30.1 | 30.5 |
MnO | 0.33 | 0.31 | 0.29 | 0.32 | 0.34 | 0.21 | 0.21 | 0.20 | 0.39 | 0.32 | 0.71 | 0.46 | 0.37 | 0.14 | 0.14 | 0.20 | 0.12 | 0.19 | 0.19 |
MgO | 0.10 | 0.05 | 0.09 | 0.11 | 0.11 | 0.16 | 0.08 | 0.20 | 0.37 | 0.37 | 0.44 | 0.28 | 0.26 | 2.94 | 3.23 | 3.00 | 3.02 | 3.20 | 3.19 |
CaO | 0.28 | 0.10 | 0.11 | 0.10 | 0.10 | 0.10 | 0.02 | 0.04 | 0.07 | 0.07 | 0.07 | 0.09 | 0.35 | 0.03 | 0.08 | 0.09 | 0.09 | 0.08 | 0.03 |
Na2O | 0.15 | 0.08 | 0.12 | 0.11 | 0.09 | 0.12 | 0.07 | 0.27 | 0.14 | 0.11 | 0.13 | 0.12 | 0.08 | 0.26 | 0.16 | 0.17 | 0.20 | 0.18 | 0.10 |
K2O | 9.19 | 9.25 | 9.25 | 8.97 | 8.81 | 8.34 | 9.64 | 9.00 | 0.08 | 0.07 | 0.04 | 0.09 | 0.03 | 9.83 | 7.94 | 9.99 | 7.65 | 9.70 | 10.00 |
Total | 95.9 | 96.5 | 95.7 | 95.4 | 95.7 | 95.3 | 95.7 | 93.8 | 98.6 | 97.6 | 95.0 | 97.6 | 97.1 | 95.0 | 92.8 | 96.6 | 84.0 | 95.3 | 97.9 |
FeO | 32.8 | 32.9 | 32.3 | 32.7 | 32.3 | 33.4 | 32.0 | 32.2 | 41.5 | 41.1 | 38.7 | 39.9 | 40.4 | 26.2 | 27.9 | 26.1 | 22.4 | 27.2 | 27.1 |
Fe2O3 | 2.86 | 3.10 | 3.09 | 3.06 | 3.49 | 3.28 | 3.14 | 2.80 | 2.56 | 2.54 | 2.53 | 2.72 | 2.58 | 3.48 | 3.55 | 3.75 | 3.74 | 3.29 | 3.76 |
Si | 5.89 | 5.89 | 5.91 | 5.87 | 5.90 | 5.82 | 5.90 | 5.89 | 5.61 | 5.60 | 5.57 | 5.59 | 5.60 | 5.92 | 5.68 | 5.91 | 5.91 | 5.88 | 5.90 |
AlIV | 2.11 | 2.11 | 2.09 | 2.13 | 2.10 | 2.19 | 2.10 | 2.11 | 2.39 | 2.40 | 2.43 | 2.41 | 2.40 | 2.08 | 2.33 | 2.09 | 2.09 | 2.12 | 2.10 |
AlVI | 0.91 | 0.95 | 0.94 | 0.92 | 0.93 | 0.84 | 0.81 | 0.81 | 1.20 | 1.20 | 1.27 | 1.31 | 1.28 | 0.73 | 0.63 | 0.70 | 0.76 | 0.57 | 0.60 |
Ti | 0.13 | 0.12 | 0.13 | 0.13 | 0.14 | 0.16 | 0.25 | 0.20 | 0.04 | 0.05 | 0.07 | 0.05 | 0.02 | 0.38 | 0.37 | 0.42 | 0.38 | 0.42 | 0.44 |
Fe3+ | 0.37 | 0.40 | 0.40 | 0.40 | 0.45 | 0.43 | 0.41 | 0.37 | 0.31 | 0.31 | 0.32 | 0.33 | 0.32 | 0.44 | 0.46 | 0.46 | 0.53 | 0.42 | 0.46 |
Fe2+ | 4.72 | 4.69 | 4.65 | 4.72 | 4.62 | 4.84 | 4.60 | 4.73 | 5.66 | 5.66 | 5.44 | 5.45 | 5.57 | 3.67 | 4.03 | 3.59 | 3.51 | 3.83 | 3.70 |
Mn | 0.05 | 0.04 | 0.04 | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 | 0.05 | 0.04 | 0.10 | 0.06 | 0.05 | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 |
Mg | 0.03 | 0.01 | 0.02 | 0.03 | 0.03 | 0.04 | 0.02 | 0.05 | 0.09 | 0.09 | 0.11 | 0.07 | 0.07 | 0.74 | 0.83 | 0.74 | 0.84 | 0.80 | 0.78 |
Ca | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | / | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.06 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 |
Na | 0.05 | 0.03 | 0.04 | 0.04 | 0.03 | 0.04 | 0.02 | 0.09 | 0.04 | 0.03 | 0.04 | 0.04 | 0.02 | 0.09 | 0.05 | 0.05 | 0.07 | 0.06 | 0.03 |
K | 2.01 | 2.01 | 2.03 | 1.98 | 1.93 | 1.84 | 2.12 | 2.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 2.10 | 1.75 | 2.10 | 1.83 | 2.08 | 2.08 |
IFe | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.83 | 0.83 | 0.83 | 0.81 | 0.83 | 0.83 |
IMg | 0.01 | / | / | 0.01 | 0.01 | 0.01 | / | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.17 | 0.17 | 0.17 | 0.19 | 0.17 | 0.17 |
T (°C) | 409 | 376 | 419 | 422 | 434 | 480 | 592 | 549 | / | / | / | / | / | 670 | 664 | 686 | 670 | 686 | 693 |
Spot | Isotope Ratio | Age (Ma) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | ±1 σ | 207Pb/235U | ±1 σ | 206Pb/238U | ±1 σ | 207Pb/235U | ±1 σ | 206Pb/238U | ±1 σ | |
HZ12A fine-grained granite | ||||||||||
1 | 0.0473 | 0.002 | 0.1453 | 0.01 | 0.0222 | 0.0009 | 138 | 6 | 142 | 6 |
2 | 0.0518 | 0.002 | 0.1612 | 0.01 | 0.0225 | 0.0007 | 152 | 5 | 144 | 4 |
3 | 0.0527 | 0.002 | 0.1000 | 0.00 | 0.0137 | 0.0004 | 97 | 3 | 88 | 3 |
4 | 0.0531 | 0.002 | 0.1203 | 0.00 | 0.0164 | 0.0005 | 115 | 4 | 105 | 3 |
5 | 0.0522 | 0.002 | 0.1617 | 0.01 | 0.0225 | 0.0007 | 152 | 5 | 143 | 4 |
6 | 0.0512 | 0.002 | 0.1487 | 0.01 | 0.0211 | 0.0007 | 141 | 4 | 134 | 4 |
7 | 0.0555 | 0.004 | 0.2778 | 0.02 | 0.0386 | 0.0039 | 249 | 14 | 244 | 24 |
8 | 0.0508 | 0.002 | 0.1508 | 0.00 | 0.0215 | 0.0006 | 143 | 4 | 137 | 4 |
9 | 0.0545 | 0.002 | 0.1729 | 0.01 | 0.0230 | 0.0007 | 162 | 5 | 147 | 4 |
10 | 0.0498 | 0.002 | 0.1551 | 0.00 | 0.0226 | 0.0007 | 146 | 4 | 144 | 4 |
11 | 0.0514 | 0.002 | 0.1560 | 0.01 | 0.0222 | 0.0007 | 147 | 4 | 141 | 5 |
12 | 0.0525 | 0.002 | 0.1618 | 0.01 | 0.0224 | 0.0007 | 152 | 5 | 143 | 4 |
13 | 0.0531 | 0.002 | 0.1255 | 0.01 | 0.0171 | 0.0006 | 120 | 5 | 109 | 4 |
14 | 0.0530 | 0.002 | 0.1075 | 0.00 | 0.0147 | 0.0007 | 104 | 3 | 94 | 4 |
15 | 0.0512 | 0.002 | 0.1517 | 0.00 | 0.0215 | 0.0006 | 143 | 4 | 137 | 4 |
HZ13A coarse-grained granite | ||||||||||
1 | 0.0589 | 0.007 | 0.1606 | 0.02 | 0.0221 | 0.0026 | 151 | 18 | 141 | 16 |
2 | 0.0632 | 0.021 | 0.0827 | 0.01 | 0.0100 | 0.0017 | 81 | 14 | 64 | 11 |
3 | 0.0589 | 0.002 | 0.1775 | 0.01 | 0.0226 | 0.0009 | 166 | 5 | 144 | 6 |
4 | 0.0530 | 0.002 | 0.1497 | 0.01 | 0.0223 | 0.0016 | 142 | 5 | 142 | 10 |
5 | 0.0561 | 0.004 | 0.1663 | 0.01 | 0.0221 | 0.0017 | 156 | 12 | 141 | 10 |
6 | 0.0602 | 0.002 | 0.0861 | 0.00 | 0.0104 | 0.0003 | 84 | 3 | 66 | 2 |
7 | 0.0516 | 0.003 | 0.1146 | 0.01 | 0.0161 | 0.0011 | 110 | 10 | 103 | 7 |
8 | 0.0520 | 0.002 | 0.0994 | 0.00 | 0.0139 | 0.0005 | 96 | 3 | 89 | 3 |
9 | 0.0581 | 0.007 | 0.6587 | 0.09 | 0.0810 | 0.0034 | 514 | 55 | 502 | 20 |
10 | 0.0536 | 0.003 | 0.1581 | 0.01 | 0.0220 | 0.0012 | 149 | 9 | 140 | 7 |
11 | 0.0520 | 0.002 | 0.1597 | 0.01 | 0.0222 | 0.0007 | 150 | 5 | 142 | 5 |
12 | 0.0532 | 0.007 | 0.2748 | 0.04 | 0.0386 | 0.0041 | 247 | 32 | 244 | 26 |
13 | 0.0589 | 0.006 | 0.1748 | 0.02 | 0.0221 | 0.0018 | 164 | 19 | 141 | 11 |
14 | 0.0484 | 0.002 | 0.1527 | 0.01 | 0.0228 | 0.0008 | 144 | 5 | 145 | 5 |
15 | 0.0509 | 0.002 | 0.1589 | 0.01 | 0.0226 | 0.0007 | 150 | 4 | 144 | 4 |
16 | 0.0589 | 0.003 | 0.1153 | 0.01 | 0.0142 | 0.0010 | 111 | 5 | 91 | 6 |
17 | 0.0625 | 0.004 | 1.0321 | 0.07 | 0.1203 | 0.0082 | 720 | 37 | 732 | 47 |
18 | 0.0503 | 0.002 | 0.0908 | 0.00 | 0.0130 | 0.0004 | 88 | 3 | 83 | 3 |
19 | 0.0608 | 0.002 | 0.1776 | 0.01 | 0.0211 | 0.0007 | 166 | 5 | 135 | 4 |
Pluton | Age (Ma) | Method | Reference |
---|---|---|---|
Xinlu pluton | 141 ± 3, 141 ± 4 | LA–ICPMS zircon U-Pb | This study |
151 ± 7 | LA–ICPMS zircon U-Pb | [27] | |
Huashan pluton | 165 | Rb-Sr isochron | [47] |
162 ± 1 | SHRIMP zircon U-Pb | [26,27] | |
Guposhan pluton | 163 ± 4 | LA–ICPMS zircon U-Pb | [27] |
161 ± 2, 165 ± 2 | LA–ICPMS zircon U-Pb | [15] | |
Niumiao pluton | 163 ± 4 | SHRIMP zircon U-Pb | [14] |
161 | Hornblende Ar/Ar | [48] | |
Tong’an pluton | 160 ± 4 | SHRIMP zircon U-Pb | [14] |
163 | Hornblende Ar/Ar | [48] | |
Yingping pluton | 148 ± 4 | LA–ICPMS zircon U-Pb | [27] |
Lisong pluton | 163 ± 1 | LA–ICPMS zircon U-Pb | [15] |
162 ± 2, 162 ± 3 | SHRIMP zircon U-Pb | [27] | |
Dark enclaves | 162 ± 2 | SHRIMP zircon U-Pb | [26,27] |
Pluton | Rock Type | LREE (ppm) | HREE (ppm) | REE (ppm) | LREE/HREE | References |
---|---|---|---|---|---|---|
Xinlu | fine-grained granite | 156 | 832 | 988 | 0.19 | This study |
Xinlu | coarse-grained granite | 198 | 277 | 475 | 0.72 | This study |
Zhaibei | fine-grained muscovitic alkali-feldspar granite | 53 | 140 | 194 | 0.4 | [76] |
Zhaibei | coarse-grained biotite syenogranite | 276 | 112 | 389 | 2.86 | [76] |
Zudong | medium-grained granite | 84.5 | 179 | 264 | 0.52 | [80] |
Dabu | fine-grained granite | 58 | 141 | 199 | 0.46 | [80] |
Dabu | medium-grained granite | 128 | 149 | 278 | 1.26 | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Cai, Y.; Fu, W.; Han, Z.; Liu, P.; Lao, C.; Zhao, Y.; Han, Z.; Zhou, Y. Mineralogical, Geochronological, and Geochemical Characteristics of Early Cretaceous Granite in South China: Implications for Tectonic Evolution and REE Mineralization. Minerals 2022, 12, 1308. https://doi.org/10.3390/min12101308
Qin Y, Cai Y, Fu W, Han Z, Liu P, Lao C, Zhao Y, Han Z, Zhou Y. Mineralogical, Geochronological, and Geochemical Characteristics of Early Cretaceous Granite in South China: Implications for Tectonic Evolution and REE Mineralization. Minerals. 2022; 12(10):1308. https://doi.org/10.3390/min12101308
Chicago/Turabian StyleQin, Yue, Yongfeng Cai, Wei Fu, Zhixuan Han, Panfeng Liu, Changling Lao, Yongshan Zhao, Zhengchao Han, and Yun Zhou. 2022. "Mineralogical, Geochronological, and Geochemical Characteristics of Early Cretaceous Granite in South China: Implications for Tectonic Evolution and REE Mineralization" Minerals 12, no. 10: 1308. https://doi.org/10.3390/min12101308