Mineralization and Structural Controls of the AB-Bid Carbonate-Hosted Pb-Zn (±Cu) Deposit, Tabas-Posht e Badam Metallogenic Belt, Iran
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods
4. Mineralization General Characteristics and Paragenesis
4.1. Hydrothermal Ore Mineralization
4.2. Supergene Mineralization
5. Sulfur Isotopes
6. Discussion
6.1. Structural Controls on Mineralization
6.2. Sulfur Origin
6.3. Ore Deposit Type and Ore Genesis
7. Conclusions and Implications for Mineral Exploration
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sangster, D.F. Carbonate-Hosted Lead-Zinc Deposits: 75th Anniversary Volume; Society of Economic Geologists, Inc.: Littleton, CO, USA, 1996; Volume 4. [Google Scholar] [CrossRef]
- Rajabi, A. Metallogeny and Geology of Sediment-Hosted Zn-Pb Deposits of Iran; University of Tehran Press: Tehran, Iran, 2022. [Google Scholar]
- Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration. Int. Geol. Rev. 2012, 54, 1649–1672. [Google Scholar] [CrossRef]
- Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: A review for future mineral exploration. Aust. J. Earth Sci. 2013, 60, 197–216. [Google Scholar] [CrossRef]
- Rajabi, A.; Mahmoodi, P.; Rastad, E.; Niroomand, S.; Canet, C.; Alfonso, P.; Shabani, A.A.T.; Yarmohammadi, A. Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi. J. Geochem. Explor. 2019, 205, 106346. [Google Scholar] [CrossRef]
- Karimpour, M.H.; Sadeghi, M. Dehydration of hot oceanic slab at depth 30–50 km: KEY to formation of Irankuh-Emarat PbZn MVT belt. Central Iran. J. Geochem. Explor. 2018, 194, 88–103. [Google Scholar] [CrossRef]
- Rajabi, A.; Yarmohammadi, A. Geologic Map (1:5000) and Report for the Ab-Bid Pb-Zn (Cu) Deposit, South of Ravar, Central Iran; Hadid Bonyan Mining Company: Esfahan, Iran, 2015. [Google Scholar]
- Rajabi, A.; Yarmohammadi, A. Geologic Map of Underground Tunnels (1:200) and Report for the Ab-Bid Pb-Zn (Cu) Deposit, Central Iran; Hadid Bonyan Mining Company: Esfahan, Iran, 2016. [Google Scholar]
- Alavi, M. Tectonic Map of the Middle East; Scale 1:5,000,000; Geological Survey of Iran: Tehran, Iran, 1991. [Google Scholar]
- Aghanabati, A. Major sedimentary and structural units of Iran (map). Geosciences 1998, 7, 29–30. [Google Scholar]
- Golonka, J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 2004, 381, 235–273. [Google Scholar] [CrossRef]
- Alavi, M. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 1994, 229, 211–238. [Google Scholar] [CrossRef]
- Ghasemi, A.; Talbot, C.J. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). J. Asian Earth Sci. 2005, 26, 683–693. [Google Scholar] [CrossRef]
- Alavi, M. Tectonostratigraphic synthesis and structural style of the Alborz Mountains system in northern Iran. J. Geodyn. 1996, 11, 1–33. [Google Scholar] [CrossRef]
- Bagheri, S.; Stampfli, G.M. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics 2008, 451, 123–155. [Google Scholar] [CrossRef]
- Bagheri, S.; Gol, S.D. The eastern Iranian orocline. Earth Sci. Rev. 2020, 210, 103322. [Google Scholar] [CrossRef]
- Allen, M.B.; Armstrong, H.A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 265, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Horton, B.K.; Hassanzadeh, J.; Stockli, D.F.; Axen, G.J.; Gillis, R.J.; Guest, B.; Grove, M. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics 2008, 451, 97–122. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin, Germany, 2015. [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-hosted lead-zinc deposits: A global perspective. In Economic Geology: One Hundredth Anniversary Volume; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; pp. 561–607. [Google Scholar]
- Leach, D.L.; Taylor, R.D.; Fey, D.L.; Diehl, S.F.; Saltus, R.W. A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores: Chapter A of Mineral Deposit Models for Resource Assessment; Scientific Investigations Report 2010-5070-A; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.J. Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives: Processes and Perspectives, 2nd ed.; Treatise on Geochemistry: London, UK, 2014; pp. 515–541. [Google Scholar]
- Leach, D.L.; Bradley, D.; Lewchuk, M.T.; Symons, D.T.; Marsily, G.; Brannon, J. Mississippi Valley-type lead–zinc deposits through geological time: Implications from recent age-dating research. Miner. Depos. 2001, 36, 711–740. [Google Scholar] [CrossRef]
- Jazi, M.A.; Karimpour, M.H.; Shafaroudi, A.M. Nakhlak carbonate-hosted Pb (Ag) deposit, Isfahan province, Iran: A geological, mineralogical, geochemical, fluid inclusion, and sulfur isotope study. Ore Geol. Rev. 2017, 80, 27–47. [Google Scholar] [CrossRef]
- Ehya, F. The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran: Isotope (C, O, S, Pb) geochemistry and ore genesis. Mineral. Petrol. 2014, 108, 123–136. [Google Scholar] [CrossRef]
- Bottrell, S.H.; Newton, R.J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Sci. Rev. 2006, 75, 59–83. [Google Scholar] [CrossRef]
- Kiyosu, Y.; Krouse, H.R. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochem. J. 1990, 24, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; HL Barnes: Stratford, UK, 1979; pp. 509–567. [Google Scholar]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves for sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Leavitt, W.D.; Halevy, I.; Bradley, A.S.; Johnston, D.T. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc. Natl. Acad. Sci. USA 2013, 110, 11244–11249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habicht, K.S.; Gade, M.; Thamdrup, B.; Berg, P.; Canfield, D.E. Calibration of sulfate levels in the Archean ocean. Science 2002, 298, 2372–2374. [Google Scholar] [CrossRef] [Green Version]
- Sawicka, J.E.; Jørgensen, B.B.; Brüchert, V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences 2012, 9, 3425. [Google Scholar] [CrossRef] [Green Version]
- Goldhaber, M.B.; Orr, W.L. Kinetic controls on thermochemical sulfate reduction as a source of sedimentary H2S. In Geochemical Transformations of Sedimentary Sulfur; ACS Symposium Series; Vairavamurthy, M.A., Schoonen, M.A.A., Eds.; ACS Publications: Washington, DC, USA, 1995; Volume 612, pp. 412–425. [Google Scholar] [CrossRef]
- Rajabi, A.; Alfonso, P.; Canet, C.; Rastad, E.; Niroomand, S.; Modabberi, S.; Mahmoodi, P. The world-class Koushk Zn-Pb deposit, Central Iran: A genetic model for vent-proximal shale-hosted massive sulfide (SHMS) deposits–Based on paragenesis and stable isotope geochemistry. Ore Geol. Rev. 2020, 124, 103654. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Isaksen, M.F.; Jannasch, H.W. Bacterial sulfate reduction above 100 C in deep-sea hydrothermal vent sediments. Science 1992, 258, 1756–1757. [Google Scholar] [CrossRef]
- Bradley, A.S.; Leavitt, W.D.; Schmidt, M.; Knoll, A.H.; Girguis, P.R.; Johnston, D.T. Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology 2016, 14, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, H.; Kaiser, C.J.; Geer, K.A. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits. In Stable Isotopes and Fluid Processes in Mineralization; Hebert, H.K., Ho, S.E., Eds.; Geological Society of Australia, Special Publication: Sydney, Australia, 1990; pp. 70–120. [Google Scholar]
- Basuki, N.I.; Taylor, B.E.; Spooner, E.T.C. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, Northern Peru. Econ. Geol. 2008, 103, 783–799. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 517–611. [Google Scholar]
- Wilmsen, M.; Fürsich, F.T.; Seyed-Emami, K.; Majidifard, M.R.; Taheri, J. The Cimmerian Orogeny in northern Iran: Tectono-stratigraphic evidence from the foreland. Terra Nova 2009, 21, 211–218. [Google Scholar] [CrossRef]
Sample | Mineral | δ34S | Sample | Mineral | δ34S |
---|---|---|---|---|---|
Ab-Gn 1 | Galena | −1.6 | Ab-Gn 2 | Galena | −1.9 |
Ab-Gn 3 | Galena | −2.1 | Ab-Gn 10 | Galena | −1.7 |
Ab-Gn 4 | Galena | −1.0 | Ab-Sp 1 | Sphalerite | 2.5 |
Ab-Gn 5 | Galena | −1.0 | Ab-Sp 2 | Sphalerite | 1.4 |
Ab-Gn 6 | Galena | −1.0 | Ab-Sp 3 | Sphalerite | 1.2 |
Ab-Gn 7 | Galena | −1.9 | Ab-Ba 1 | Barite | 18.2 |
Ab-Gn 8 | Galena | −1.9 | Ab-Ba 2 | Barite | 12.3 |
Ab-Gn 9 | Galena | −2.1 | Ab-Ba 3 | Barite | 15.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, A.; Canet, C.; Alfonso, P.; Mahmoodi, P.; Yarmohammadi, A.; Sharifi, S.; Mahdavi, A.; Rezaei, S. Mineralization and Structural Controls of the AB-Bid Carbonate-Hosted Pb-Zn (±Cu) Deposit, Tabas-Posht e Badam Metallogenic Belt, Iran. Minerals 2022, 12, 95. https://doi.org/10.3390/min12010095
Rajabi A, Canet C, Alfonso P, Mahmoodi P, Yarmohammadi A, Sharifi S, Mahdavi A, Rezaei S. Mineralization and Structural Controls of the AB-Bid Carbonate-Hosted Pb-Zn (±Cu) Deposit, Tabas-Posht e Badam Metallogenic Belt, Iran. Minerals. 2022; 12(1):95. https://doi.org/10.3390/min12010095
Chicago/Turabian StyleRajabi, Abdorrahman, Carles Canet, Pura Alfonso, Pouria Mahmoodi, Ali Yarmohammadi, Shahba Sharifi, Amir Mahdavi, and Somaye Rezaei. 2022. "Mineralization and Structural Controls of the AB-Bid Carbonate-Hosted Pb-Zn (±Cu) Deposit, Tabas-Posht e Badam Metallogenic Belt, Iran" Minerals 12, no. 1: 95. https://doi.org/10.3390/min12010095