Assessment of the Ecological Condition of Informal Settlements Using the Settlement Surface Ecological Index
Abstract
:1. Introduction
2. Study Area
3. Data
4. Methodology
4.1. Classification of Urban Land-Use Classes
4.2. Mapping of Land Surface Temperature
4.3. Mapping of Vegetation Moisture
4.4. The Assessment of Settlement Surface Ecological Index
4.5. Quality Assurance
5. Results
5.1. Image Segmentation
5.2. Image Classification
5.3. Assessment of Biophysical Characteristics
5.4. Assessment of Settlement Surface Ecological Index (SSEI)
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Settlement Type | Description | Picture |
Old, informal medium density | Medium-density informal settlements with trees | |
Informal medium density, new | Less than five-year-old informal settlement with medium building density | |
Informal settlement density, new development | New, informal settlement developments, less than a year old | |
Formal low density | Old suburb with a low building density of single- or double-story houses and big yards | |
Formal low-density, new development | New development of formal low building density | |
Formal medium density (cluster) | A formal medium building density where dwellings have private grounds within a common ground of other dwellings, located in a suburb | |
Formal medium density with backyard shacks | Formal townships with medium building density, located beyond the city limits, with backyard shacks | |
Formal shacks | Serviced informal settlement, located in a township. Majority of the structures are shacks | |
Formal medium density | Formal townships with medium building density located beyond the city limits | |
Formal medium density, new | Formal medium building density, less than five years old | |
Commercial | A non-residential built-up surface area used to conduct commerce, and other areas. The selected area is located outside the central business district (CBD) | |
Industrial | A non-residential built-up surface area used for manufacturing or processing of products |
References
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Gallagher, J.; Baldauf, R.; Fuller, C.H.; Kumar, P.; Gill, L.W.; McNabola, A. Passive Methods for Improving Air Quality in the Built Environment: A Review of Porous and Solid Barriers. Atmos. Environ. 2015, 120, 61–70. Available online: https://www.sciencedirect.com/science/article/pii/S1352231015303204 (accessed on 11 August 2023). [CrossRef]
- Adegun, O.B. Green Infrastructure Can Improve the Lives of Slum Dwellers in African Cities. Front. Sustain. Cities 2021, 3, 621051. [Google Scholar] [CrossRef]
- Haase, D.; Kabisch, S.; Haase, A.; Andersson, E.; Banzhaf, E.; Baró, F.; Brenck, M.; Fischer, L.K.; Frantzeskaki, N.; Kabisch, N.; et al. Greening cities–To be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat Int. 2017, 64, 41–48. Available online: https://www.sciencedirect.com/science/article/pii/S0197397516309390 (accessed on 11 August 2023). [CrossRef]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. Available online: https://www.sciencedirect.com/science/article/pii/S0048969720358630 (accessed on 11 August 2023). [CrossRef]
- Anderson, B.; Bell, M. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology 2009, 20, 205. [Google Scholar] [CrossRef]
- Ramsay, E.E.; Fleming, G.M.; Faber, P.A.; Barker, S.F.; Sweeney, R.; Taruc, R.R.; Chown, S.L.; Duffy, G.A. Chronic heat stress in tropical urban informal settlements. iScience 2021, 24, 103248. Available online: https://www.sciencedirect.com/science/article/pii/S2589004221012177 (accessed on 11 August 2023). [CrossRef]
- Wang, L.Y.; Xiao, Y.; Rao, E.M.; Jiang, L.; Xiao, Y.; Ouyang, Z.Y. An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia. Int. J. Environ. Res. Public Health 2018, 15, 550. Available online: https://www.mdpi.com/1660-4601/15/3/550 (accessed on 11 August 2023). [CrossRef]
- Kemper, T.; Mudau, N.; Mangara, P.; Pesaresi, M. Towards an automated monitoring of human settlements in South Africa using high resolution SPOT satellite imagery. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2015; pp. 1389–1394. [Google Scholar]
- Pesaresi, M.; Politis, P. GHS-BUILT-S R2022A—GHS Built-Up Surface Grid, Derived from Sentinel2 Composite and Landsat, Multitemporal (1975–2030); European Commission, Joint Research Centre (JRC): Brussels, Belgium, 2022. [Google Scholar]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining where humans live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Mudau, N.; Mapurisa, W.; Tsoeleng, T.; Mashalane, M. Towards development of a national human settlement layer using high resolution imagery: A contribution to SDG reporting. S. Afr. J. Geomat. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Gram-Hansen, B.J.; Helber, P.; Varatharajan, I.; Azam, F.; Coca-Castro, A.; Kopackova, V.; Bilinski, P. Mapping informal settlements in developing countries using machine learning and low resolution multi-spectral data. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019; pp. 361–368. [Google Scholar]
- Luo, E.; Kuffer, M.; Wang, J. Urban poverty maps–From characterising deprivation using geo-spatial data to capturing deprivation from space. Sustain. Cities Soc. 2022, 84, 104033. Available online: https://www.sciencedirect.com/science/article/pii/S2210670722003535 (accessed on 11 August 2023). [CrossRef]
- Owusu, M.; Kuffer, M.; Belgiu, M.; Grippa, T.; Lennert, M.; Georganos, S.; Vanhuysse, S. Towards user-driven earth observation-based slum mapping. Comput. Environ. Urban Syst. 2021, 89, 101681. Available online: https://www.sciencedirect.com/science/article/pii/S0198971521000880 (accessed on 11 August 2023). [CrossRef]
- Yadav, V.; Ghosh, S.K. Assessment and prediction of urban growth for a mega-city using CA-Markov model. Geocarto Int. 2021, 36, 1960–1992. [Google Scholar] [CrossRef]
- Borana, S.L.; Vaishnav, A.; Yadav, S.K.; Parihar, S.K. Urban Growth Assessment Using Remote Sensing, GIS and Shannon’s Entropy Model: A Case Study of Bhilwara City, Rajasthan. In Proceedings of the 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), Jaipur, India, 7–8 February 2020; pp. 1–6. [Google Scholar]
- Mudau, N.; Mhangara, P. Investigation of informal settlement indicators in a densely populated area using very high spatial resolution satellite imagery. Sustainability 2021, 13, 4735. [Google Scholar] [CrossRef]
- Fallatah, A.; Jones, S.; Mitchell, D.; Kohli, D. Mapping informal settlement indicators using object-oriented analysis in the Middle East. Int. J. Digit Earth 2019, 12, 802–824. [Google Scholar] [CrossRef]
- Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Detecting informal settlements from QuickBird data in Rio de Janeiro using an object based approach. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 531–553. [Google Scholar]
- Chen, W.; Wu, A.N.; Biljecki, F. Classification of Urban Morphology with Deep Learning: Application on Urban Vitality. Comput. Environ. Urban Syst. 2021, 90, 101706. [Google Scholar] [CrossRef]
- Wang, J.; Fleischmann, M.; Venerandi, A.; Romice, O.; Kuffer, M.; Porta, S. EO + Morphometrics: Understanding cities through urban morphology at large scale. Landsc Urban Plan. 2023, 233, 104691. [Google Scholar] [CrossRef]
- Croce, S.; Vettorato, D. Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions. Sustain. Cities Soc. 2021, 75, 103313. [Google Scholar] [CrossRef]
- Ridd, M.K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Phinn, S.; Stanford, M.; Scarth, P.; Murray, A.T.; Shyy, P.T. Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques. Int. J. Remote Sens. 2002, 23, 4131–4153. [Google Scholar] [CrossRef]
- Aina, Y.A.; Adam, E.; Ahmed, F.; Wafer, A.; Alshuwaikhat, H.M. Using multisource data and the V-I-S model in assessing the urban expansion of Riyadh city, Saudi Arabia. Eur. J. Remote Sens. 2019, 52, 557–571. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. Available online: https://www.sciencedirect.com/science/article/pii/S1470160×18300827 (accessed on 11 August 2023). [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-Environmental Quality Assessment in China’s 35 Major Cities Based On Remote Sensing Ecological Index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Weng, Q.; Kiavarz, M.; Alavipanah, S.K. Remotely sensed urban surface ecological index (RSUSEI): An analytical framework for assessing the surface ecological status in urban environments. Remote Sens. 2020, 12, 2029. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.M.; Yang, J. Assessment of urban ecological quality and spatial heterogeneity based on remote sensing: A case study of the rapid urbanization of wuhan city. Remote Sens. 2021, 13, 4440. [Google Scholar] [CrossRef]
- Setiawan, H.; Mathieu, R.; Thompson-Fawcett, M. Assessing the applicability of the V–I–S model to map urban land use in the developing world: Case study of Yogyakarta, Indonesia. Comput. Environ. Urban Syst. 2006, 30, 503–522. Available online: https://www.sciencedirect.com/science/article/pii/S0198971505000360 (accessed on 11 August 2023). [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- UN-Habitat. The challenge of slums: Global report on human settlements 2003. Manag. Environ. Qual. Int. J. 2004, 15, 337–338. [Google Scholar] [CrossRef]
- Devi, P.P.; Lowry, J.H.; Weber, E. Global environmental impact of informal settlements and perceptions of local environmental threats: An empirical case study in Suva, Fiji. Habitat Int. 2017, 69, 58–67. Available online: https://www.sciencedirect.com/science/article/pii/S0197397516310293 (accessed on 11 August 2023). [CrossRef]
- Ramin, B. Slums, climate change and human health in sub-Saharan Africa. Bull. World Health Organ. 2009, 87, 886. Available online: https://europepmc.org/articles/PMC2789375 (accessed on 11 August 2023). [CrossRef]
- Cooperative Governance and Traditional Affairs. 2020. Available online: https://www.cogta.gov.za/index.php/page/36/?option=com_docman&task=cat_view&gid=111&limit=5&limitstart=5&order=name&dir=ASC (accessed on 11 August 2023).
- Mudau, N.; Mhangara, P. Towards understanding informal settlement growth patterns: Contribution to SDG reporting and spatial planning. Remote Sens Appl. 2022, 27, 100801. [Google Scholar] [CrossRef]
- City of Tshwane. Human Settlements. 2020. Available online: https://www.dffe.gov.za/sites/default/files/reports/environmentoutlook_chapter5.pdf (accessed on 11 August 2023).
- Statistics South Africa. Census 2011 Metadata. Available online: http://www.statssa.gov.za/census/census_2011/census_products/Census_2011_Metadata.pdf (accessed on 11 August 2023).
- De Pinho, C.M.D.; Fonseca, L.M.G.; Korting, T.S.; de Almeida, C.M.; Kux, H.J.H. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. Int. J. Remote Sens. 2012, 33, 5973–5995. [Google Scholar] [CrossRef]
- Definiens. Definiens Definiens Developer 7 Developer 7 Reference Book Reference Book. 2007. Available online: www.definiens.comwww.definiens.com (accessed on 11 August 2023).
- Baatz, M. Multi resolution segmentation: An optimum approach for high quality multi scale image segmentation. In Beutrage zum AGIT-Symposium; Salzburg: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Mugiraneza, T.; Nascetti, A.; Ban, Y. WorldView-2 data for hierarchical object-based urban land cover classification in Kigali: Integrating rule-based approach with urban density and greenness indices. Remote Sens. 2019, 11, 2128. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. Available online: https://www.sciencedirect.com/science/article/pii/S092427161630661X (accessed on 11 August 2023). [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. In IEEE Transactions on Systems, Man, and Cybernetics; IEEE: New York, NY, USA, 1973; pp. 610–621. [Google Scholar]
- Van de Voorde, T.; De Genst, W.; Canters, F.; Stephenne, N.; Wolff, E.; Binard, M. Extraction of Land Use/Land Cover-Related Information from Very High Resolution Data in Urban and Suburban Areas; Millpress: Rotterdam, The Netherlands, 2004; pp. 237–244. Available online: https://www.researchgate.net/publication/237134807 (accessed on 11 August 2023).
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. Available online: https://www.sciencedirect.com/science/article/pii/003442578890106X (accessed on 11 August 2023). [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A Robust Built-Up Area Presence Index by Anisotropic Rotation-Invariant Textural Measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- White, K.; Walden, J.; Drake, N.; Eckardt, F.; Settlell, J. Mapping the iron oxide content of dune sands, Namib Sand Sea, Namibia, using landsat thematic mapper data. Remote Sens. Environ. 1997, 62, 30–39. Available online: https://www.sciencedirect.com/science/article/pii/S0034425797000680 (accessed on 11 August 2023). [CrossRef]
- Stefanov, W.L.; Ramsey, M.S.; Christensen, P.R. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ. 2001, 77, 173–185. Available online: https://www.sciencedirect.com/science/article/pii/S0034425701002048 (accessed on 11 August 2023). [CrossRef]
- Chen, X.; Sun, G.; Wang, Z. A case study on the urban impervious surface distribution based on a BCI index. In Proceedings of the International Symposium on Multispectral Image Processing and Pattern Recognition, Enshi, China, 31 October–1 November 2015; Available online: https://api.semanticscholar.org/CorpusID:130192599 (accessed on 11 August 2023).
- Ukhnaa, M.; Huo, X.; Gaudel, G. Modification of urban built-up area extraction method based on the thematic index-derived bands. IOP Conf. Ser Earth Environ Sci. 2019, 227, 62009. [Google Scholar] [CrossRef]
- Peng, X.; Wu, W.; Zheng, Y.; Sun, J.; Hu, T.; Wang, P. Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Sci. Rep. 2020, 10, 10451. [Google Scholar] [CrossRef] [PubMed]
Spectral Band | Wavelength (µm) | Spatial Resolution (m) |
---|---|---|
SPOT 7 | ||
Panchromatic | 0.45–0.75 | 1.5 |
Blue | 0.45–0.52 | 6 |
Green | 0.53–0.06 | 6 |
Red | 0.62–0.69 | 6 |
Near-Infrared | 0.76–0.89 | 6 |
Landsat 8 | ||
Panchromatic | 0.50–0.68 | 15 |
Coastal Blue | 0.43–0.45 | 30 |
Blue | 0.45–0.67 | 30 |
Green | 0.53–0.59 | 30 |
Red | 0.64–0.67 | 30 |
Near-Infrared | 0.85–0.88 | 30 |
Short-wave Infrared1 | 1.57–1.65 | 30 |
Short-wave Infrared 2 | 2.11–2.29 | 30 |
Cirrus | 1.36–1.38 | 30 |
Thermal Infrared 1 | 10.6–11.19 | 100 |
Thermal Infrared 2 | 11.50–12.51 | 100 |
Class | User Accuracy % | Producer Accuracy % |
---|---|---|
Impervious surface | 97.9 | 94.4 |
Soil | 87.2 | 82.8 |
Trees | 89.7 | 98.6 |
Grass | 66.6 | 63.6 |
Settlement Type | LST _Mean | Soil % | Vegetation Moisture | Impervious Surface % | Tree % | Grass % |
---|---|---|---|---|---|---|
Commercial | 36.90 | 0 | 0.00 | 77 | 19 | 3 |
Industrial | 38.67 | 0 | −0.02 | 90 | 4 | 6 |
Formal high density with shacks | 38.31 | 1 | −0.07 | 91 | 2 | 5 |
Formal medium density | 37.88 | 16 | −0.05 | 66 | 6 | 11 |
Formal shacks | 38.70 | 48 | −0.09 | 43 | 1 | 7 |
Old informal medium density | 34.41 | 0 | −0.02 | 31 | 63 | 6 |
Informal medium-density new development | 42.67 | 3 | −0.14 | 47 | 8 | 42 |
Formal low density | 36.05 | 1 | 0.07 | 24 | 69 | 5 |
Formal low-density new development | 39.16 | 3 | −0.03 | 53 | 8 | 37 |
Formal medium-density new development | 37.76 | 46 | −0.08 | 49 | 0 | 4 |
Formal high density (clusters) | 37.81 | 3 | 0.00 | 65 | 23 | 8 |
Informal new development | 39.77 | 3 | −0.06 | 17 | 47 | 33 |
Settlement Type | LST | Vegetation Moisture | Soil | Impervious Surface | Tree | Grass |
---|---|---|---|---|---|---|
Commercial | 0.30 | 0.00 | 0.66 | 0.81 | 0.28 | 0.28 |
Industrial | 0.52 | 0.00 | 0.59 | 0.99 | 0.06 | 0.06 |
Formal high density with shacks | 0.47 | 0.00 | 0.30 | 1.00 | 0.03 | 0.03 |
Formal medium density | 0.42 | 0.33 | 0.42 | 0.66 | 0.09 | 0.09 |
Formal shacks | 0.52 | 1.00 | 0.20 | 0.35 | 0.01 | 0.01 |
Old informal medium density | 0.00 | 0.00 | 0.59 | 0.19 | 0.91 | 0.91 |
Informal medium-density new development | 1.00 | 0.06 | 0.00 | 0.41 | 0.12 | 0.12 |
Formal low density | 0.20 | 0.02 | 1.00 | 0.09 | 1.00 | 1.00 |
Formal low-density new development | 0.58 | 0.06 | 0.54 | 0.49 | 0.00 | 0.12 |
Formal medium-density new development | 0.41 | 0.96 | 0.25 | 0.43 | 0.00 | 0.00 |
Formal high density (clusters) | 0.41 | 0.06 | 0.67 | 0.65 | 0.33 | 0.33 |
Informal new development | 0.65 | 0.06 | 0.37 | 0.00 | 0.68 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudau, N.; Mhangara, P. Assessment of the Ecological Condition of Informal Settlements Using the Settlement Surface Ecological Index. Land 2023, 12, 1622. https://doi.org/10.3390/land12081622
Mudau N, Mhangara P. Assessment of the Ecological Condition of Informal Settlements Using the Settlement Surface Ecological Index. Land. 2023; 12(8):1622. https://doi.org/10.3390/land12081622
Chicago/Turabian StyleMudau, Naledzani, and Paidamwoyo Mhangara. 2023. "Assessment of the Ecological Condition of Informal Settlements Using the Settlement Surface Ecological Index" Land 12, no. 8: 1622. https://doi.org/10.3390/land12081622