Next Article in Journal
Carbonaceous Aerosols in the Atmosphere
Previous Article in Journal
Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Atmosphere 2018, 9(5), 180; https://doi.org/10.3390/atmos9050180

Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA

1
Finnish Meteorological Institute, 70211 Kuopio, Finland
2
Finnish Meteorological Institute, 00560 Helsinki, Finland
3
Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
4
Royal Netherlands Meteorological Institute, 3731 GA De Bilt, The Netherlands
5
Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH, UK
6
Department of Physics, University of Helsinki, 00560 Helsinki, Finland
*
Author to whom correspondence should be addressed.
Received: 12 April 2018 / Revised: 7 May 2018 / Accepted: 8 May 2018 / Published: 9 May 2018
(This article belongs to the Section Aerosols)
Full-Text   |   PDF [1570 KB, uploaded 10 May 2018]   |  

Abstract

Satellite data suggest that summertime aerosol optical depth (AOD) over the southeastern USA depends on the air/land surface temperature, but the magnitude of the radiative effects caused by this dependence remains unclear. To quantify these radiative effects, we utilized several remote sensing datasets and ECMWF reanalysis data for the years 2005–2011. In addition, the global aerosol–climate model ECHAM-HAMMOZ was used to identify the possible processes affecting aerosol loads and their dependence on temperature over the studied region. The satellite-based observations suggest that changes in the total summertime AOD in the southeastern USA are mainly governed by changes in anthropogenic emissions. In addition, summertime AOD exhibits a dependence on southerly wind speed and land surface temperature (LST). Transport of sea salt and Saharan dust is the likely reason for the wind speed dependence, whereas the temperature-dependent component is linked to temperature-induced changes in the emissions of biogenic volatile organic compounds (BVOCs) over forested regions. The remote sensing datasets indicate that the biogenic contribution increases AOD with increasing temperature by approximately (7 ± 6) × 10−3 K−1 over the southeastern USA. In the model simulations, the increase in summertime AOD due to temperature-enhanced BVOC emissions is of a similar magnitude, i.e., (4 ± 1) × 10−3 K−1. The largest source of BVOC emissions in this region is broadleaf trees, thus if the observed temperature dependence of AOD is caused by biogenic emissions the dependence should be the largest in the vicinity of forests. Consequently, the analysis of the remote sensing data shows that over mixed forests the biogenic contribution increases AOD by approximately (27 ± 13) × 10−3 K−1, which is over four times higher than the value for over the whole domain, while over other land cover types in the study region (woody savannas and cropland/natural mosaic) there is no clear temperature dependence. The corresponding clear-sky direct radiative effect (DRE) of the observation-based biogenic AOD is −0.33 ± 0.29 W/m2/K for the whole domain and −1.3 ± 0.7 W/m2/K over mixed forests only. The model estimate of the regional clear-sky DRE for biogenic aerosols is similar to the observational estimate for the whole domain: −0.29 ± 0.09 W/m2/K. Furthermore, the model simulations showed that biogenic emissions have a significant effective radiative forcing (ERF) in this region: −1.0 ± 0.5 W/m2/K. View Full-Text
Keywords: aerosols; direct radiative effect; effective radiative forcing; remote sensing; atmospheric modeling; biogenic volatile organic compounds; secondary organic aerosols aerosols; direct radiative effect; effective radiative forcing; remote sensing; atmospheric modeling; biogenic volatile organic compounds; secondary organic aerosols
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Mielonen, T.; Hienola, A.; Kühn, T.; Merikanto, J.; Lipponen, A.; Bergman, T.; Korhonen, H.; Kolmonen, P.; Sogacheva, L.; Ghent, D.; Pitkänen, M.R.A.; Arola, A.; de Leeuw, G.; Kokkola, H. Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA. Atmosphere 2018, 9, 180.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top