Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure
Abstract
1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Authors Contributions
Conflicts of Interest
References
- Casas, A.L.F.; Santos, G.M.D.; Chiocheti, N.B.; de Andrade, M. Effects of Temperature Variation on the Human Cardiovascular System: A Systematic Review. In Climate Change and Health. Climate Change Management; Leal Filho, W., Azeiteiro, U., Alves, F., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Elwood, P.C.; Beswick, A.; O’Brien, J.R.; Renaud, S.; Fifield, R.; Limb, E.S.; Bainton, D. Temperature and risk factors for ischaemic heart disease in the Caerphilly prospective study. Br. Heart 1993, 70, 520–523. [Google Scholar] [CrossRef]
- Woodhouse, P.R.; Khaw, K.T.; Plummer, M. Seasonal variation of blood pressure and its relationship to ambient temperature in an elderly population. J. Hypertens. 1993, 11, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, P.R.; Khaw, K.T.; Plummer, M.; Foley, A.; Meade, T.W. Seasonal variations of plasma fibrinogen and factorVII activity in the elderly: Winter infections and death from cardiovascular disease. Lancet 1994, 343, 435–439. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A., 3rd; Kanner, R.E.; Villegas, M.G.; Schwartz, J. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure. Res. Rep. Health Eff. Inst. 1999, 83, 1–19. [Google Scholar]
- Weinbacher, M.; Martina, B.; Bart, T.; Drewe, J.; Gasser, P.; Gyr, K. Blood pressure and atmospheric pressure. Ann. N. Y. Acad. Sci. 1996, 738, 335–336. [Google Scholar] [CrossRef]
- Kamiński, M.; Cieślik-Guerra, U.I.; Kotas, R.; Mazur, P.; Marańda, W.; Piotrowicz, M.; Sakowicz, B.; Napieralski, A.; Trzos, E.; Uznańska-Loch, B.; et al. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension. Int. J. Occup. Med. Environ. Health 2016, 29, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Larcan, A.; Lambert, H.; Stoltz, J.F.; Laprevote-Heuilly, M.C.; Kempf, J.B.; Lambert, J. Climatological parameters and acute vascular, neurological and cardiac accidents. Rev. Epidemiol. Sante Publique 1982, 30, 343–354. [Google Scholar] [PubMed]
- Hori, A.; Hashizume, M.; Tsuda, Y.; Tsukahara, T.; Nomiyama, T. Effects of weather variability and air pollutants on emergency admissions for cardiovascular and cerebrovascular diseases. Int. J. Environ. Health Res. 2012, 22, 416–430. [Google Scholar] [CrossRef] [PubMed]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redán, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart. J. 2013, 34, 2159–2219. [Google Scholar] [PubMed]
- Brook, R.D.; Weder, A.B.; Rajagopalan, S. The effects of environmental factors on blood pressure in clinical practice and research. J. Clin. Hypertens. 2011, 13, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Halonen, J.I.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Relationship between outdoor temperature and blood pressure. Occup. Environ. Med. 2011, 68, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.G.; Sans, S.; Salomaa, V.; Kuulasmaa, K.; Dobson, A.J. The effect of temperature on systolic blood pressure. Blood Press. Monit. 2007, 12, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Modesti, P.A.; Morabito, M.; Massetti, L.; Rapi, S.; Orlandini, S.; Mancia, G.; Gensini, G.F.; Parati, G. Seasonal blood pressure changes: An independent relationship with temperature and daylight hours. Hypertension 2013, 61, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S. Particulate matter air pollution and blood pressure. J. Am. Soc. Hypertens. 2009, 3, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Fuks, K.; Mebus, S.; Hertel, S.; Viehmann, A.; Nonnemacher, M.; Dragano, N.; Möhlenkamp, S.; Jakobs, H.; Kessler, C.; Erbel, R.; et al. Long-term urban particulate air pollution, traffic noise and arterial blood pressure. Environ. Health Perspect. 2011, 119, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Barregard, L.; Bonde, E.; Ohrstrom, E. Risk of hypertension from exposure to road traffic noise in a population-based sample. Occup. Environ. Med. 2009, 66, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Ghione, S.; Mezzasalma, L.; Del Seppia, C.; Papi, F. Do geomagnetic disturbances of solar origin affect arterial blood pressure? J. Hum. Hypertens. 1998, 12, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, S.; Stoilova, I. Planetary geomagnetic indices, human physiology and subjective complaints. J. Balkan Geophys. Soc. 2003, 6, 37–45. [Google Scholar]
- Furlan, R.; Guzzetti, S.; Crivellaro, W.; Dassi, S.; Tinelli, M.; Baselli, G.; Cerutti, S.; Lombardi, F.; Pagani, M.; Malliani, A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circ. J. 1990, 81, 537–547. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Portaluppi, F. Circadian variation of blood pressure: The basis for the chronotherapy of hypertension. Adv. Drug. Deliv. Rev. 2007, 59, 904–922. [Google Scholar] [CrossRef] [PubMed]
- White, W.B. Importance of blood pressure control over a 24-hour period. J. Manag. Care. Spec. Pharm. 2007, 13, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Barrientos, A.; López-Romero, P.; Vivas, D.; Castro-Ferreira, F.; Núñez-Gil, I.; Franco, E.; Ruiz-Mateos, B.; García-Rubira, J.C.; Fernández-Ortiz, A.; Macaya, C.; et al. Circadian variations of infarct size in acute myocardial infarction. Heart 2011, 97, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Charach, G.; Shochat, M.; Argov, O.; Weintraub, M.; Charach, L. Seasonal changes in blood pressure: Cardiac and cerebrovascular morbidity and mortality. World J. Hypertens. 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Hanna, J.M. Climate, altitude, and blood pressure. Hum. Biol. 1999, 71, 553–582. [Google Scholar] [PubMed]
- Alperovitch, A.; Lacombe, J.M.; Hanon, O.; Dartigues, J.F.; Ritchie, K.; Ducimetière, P.; Tzourio, C. Relationship between blood pressure and outdoor temperature in a large sample of elderly individuals: The Three-City study. Arch. Intern. Med. 2009, 169, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Cornélissen, G.; Halberg, F.; Otsuka, K.; Ohkawa, S.I. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed. Pharmacother. 2001, 55, 76–83. [Google Scholar] [CrossRef]
- Cornelissen, G.; Halberg, F.; Breus, T.; Syutkina, E.V.; Baevsky, R.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmos. Sol. Terr. Phys. 2002, 64, 707–720. [Google Scholar] [CrossRef]
- Palmer, S.J.; Rycroft, M.J.; Cermack, M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv. Geophys. 2006, 27, 557–595. [Google Scholar] [CrossRef]
- Gurfinkel, Y.I.; Atkov, O.Y.; Vasin, A.L.; Breus, T.K.; Sasonko, M.L.; Pishchalnikov, R.Y. Effect of zero magnetic field on cardiovascular system and microcirculation. Life Sci. Space Res. 2016, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Dobozinskas, P.; Sakalyte, G.; Lopatiene, K.; Mikelionis, N. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure. Int. J. Environ. Res. Public Health 2015, 12, 2622–2638. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Dobozinskas, P.; Dedele, A.; Lopatiene, K.; Ragaisyte, N. The short-term associations of weather and air pollution with emergency ambulance calls for paroxysmal atrial fibrillation. Environ. Sci. Pollut. Res. Int. 2017, 24, 15031–15043. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, R.; Brame, R.; Mazerolle, P.; Piquero, A. Using the correct statistical test for the equality of regression coefficients. Criminology 1998, 36, 859–866. [Google Scholar] [CrossRef]
- Madsen, C.; Nafstad, P. Associations between environmental exposure and blood pressure among participants in the Oslo Health Study (HUBRO). Eur. J. Epidemiol. 2006, 21, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.C.; Kim, H.; Oh, S.Y.; Lim, Y.H.; Kim, S.Y.; Yoon, H.J.; Park, M. Association of cold ambient temperature and cardiovascular markers. Sci. Total Environ. 2012, 1, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Pearson, D.; Malig, B.; Broadwin, R.; Green, R. The effect of high ambient temperature on emergency room visits. Epidemiology 2012, 23, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Li, Q.; Wang, J.; Lavigne, E.; Gasparrini, A.; Copes, R.; Yagouti, A.; Burnett, R.T.; Goldberg, M.S.; Villeneuve, P.J.; et al. Hospitalizations from hypertensive diseases, diabetes, and arrhythmia in relation to low and high temperatures: Population-based study. Sci. Rep. 2016, 26, 30283. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Luo, M.; Walker, R.J.; Liu, X.; Hwang, S.A.; Chinery, R. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology 2009, 20, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Morabito, M.; Crisci, A.; Orlandini, S.; Maracchi, G.; Gensini, G.F.; Modesti, P.A. A synoptic approach to weather conditions discloses a relationship with ambulatory blood pressure in hypertensives. Am. J. Hypertens. 2008, 21, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Kulakov, I.V.; Nasonova, E.V. The specific features of circadian blood pressure variations in patients with hypertensive disease in different types of weather. Klin. Med. 2004, 82, 24–27. [Google Scholar]
- Brook, R.D.; Shin, H.H.; Bard, R.L.; Burnett, R.T.; Vette, A.; Croghan, C.; Williams, R. Can personal exposures to higher nighttime and early-morning temperatures increase blood pressure? J. Clin. Hypertens. 2011, 13, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Modesti, P.A.; Morabito, M.; Bertolozzi, I.; Massetti, L.; Panci, G.; Lumachi, C.; Giglio, A.; Bilo, G.; Caldara, G.; Lonati, L.; et al. Weather-related changes in 24-hour blood pressure profile. Effects of age and implications for hypertension management. Hypertension 2006, 47, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Kario, K. Morning surge in blood pressure and cardiovascular risk: Evidence and perspectives. Hypertension 2010, 56, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Gurfinkel, Y.I.; Lyubimov, V.V.; Oraevskii, V.N.; Parfenova, L.M.; Yurev, A.S. Effect of geomagnetic disturbances on the capillary blood flow in patients with coronary heart disease. Biophysics 1995, 40, 793–799. [Google Scholar]
- Breus, T.K.; Baevskii, R.M.; Chernikova, A.G. Effects of geomagnetic disturbances on humans functional state in space flight. J. Biomed. Sci. Eng. 2012, 5, 341–355. [Google Scholar] [CrossRef]
- Stoupel, E.; Kusniec, J.; Mazur, A.; Abramson, E.; Israelevich, P.; Strasberg, B. Timing of life threatening arrhythmias detected by implantable cardioverter-defibrillators in relation to changes in cosmophysical factors. Cardiol. J. 2008, 15, 437–440. [Google Scholar] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Slapikas, R.; Sakalyte, G. The association between phenomena on the Sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction. Int. J. Biometeorol. 2013, 57, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Babarskiene, R.M.; Milvidaite, I.; Kubilius, R.; Stasionyte, J. The effect of silar-geomagnetic during and after admission on survival in patients with acute coronary syndromes. Int. J. Biometerol. 2014, 58, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, B.; Diaz-Sandoval, R. Effects of Solar activity on myocardial infarction death in low geomagnetic latitude regions. Nat. Hazards 2004, 32, 35–36. [Google Scholar] [CrossRef]
- Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S. Effect of geomagnetic disturbances on physiological parameters: An investigation on aviators. Adv. Space Res. 2011, 48, 1545–1550. [Google Scholar] [CrossRef]
- Dimitrova, S.; Angelov, I.; Petrova, E. Solar and geomagnetic activity effects on heart rate variability. Nat. Hazards 2013, 69, 25–37. [Google Scholar] [CrossRef]
- Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K. Impact of space weather on human heart rate during the years 2011–2013. Astrophys. Space Sci. 2017, 362, 138. [Google Scholar] [CrossRef]
Variable | Range | Mean (SD) | Percentiles | ||
---|---|---|---|---|---|
25 | 50 | 75 | |||
Daily number of calls | |||||
Daily | 5–41 | 18.8 (5.4) | 15 | 18 | 22 |
8:00–13:59 | 0–14 | 4.9 (2.4) | 3 | 5 | 6 |
14:00–21:59 | 1–19 | 8.4 (3.2) | 6 | 8 | 11 |
22:00–7:59 | 0–15 | 5.5 (2.6) | 4 | 5 | 7 |
Age, years | 17–104 | 67 (15) | 58 | 70 | 78 |
Environmental variables | |||||
Air temperature (°C) | −21.8–27.2 | 6.5 (9.7) | −0.1 | 6.8 | 14.5 |
Wind speed (kt) | 0.5–17.2 | 6.3 (2.8) | 4.2 | 6.1 | 8.0 |
Barometric pressure (hPA) | 977–1032 | 1005 (9) | 1000 | 1006 | 1011 |
Relative humidity (%) | 28–100 | 80 (13) | 72 | 82 | 90 |
Day length (hour) | 7.2–17.3 | 12.4 (3.4) | 9.2 | 12.5 | 15.7 |
Ap indices | 0–55 | 5.5 (5.5) | 2 | 4 | 6 |
Variable | Lag | Whole Day | 8:00–13:59 | 14:00–21:59 | 22:00–7:59 |
---|---|---|---|---|---|
RR (95% CI) | RR (95% CI) | RR (95% CI) | RR (95% CI) | ||
Day length | 0.93 (0.90–0.95) ** | 0.98 (0.93–1.04) ♦ | 0.92 (0.88–0.96) ** | 0.89 (0.85–0.94) ** | |
Weekdays not coincident with holidays | 1.04 (1.01–1.08) | 1.11 (1.04–1.19) **,†,♦ | 1.01 (0.96–1.06) | 0.99 (0.94–1.06) | |
RRs additionally adjusted for day length and the day of the week | |||||
TW | 0 | 0.83 (0.78–0.88) ** | 0.91 (0.81–1.03) † | 0.77 (0.70–0.85) ** | 0.84 (0.75–0.94) * |
TW | 1 | 0.83 (0.78–0.89) ** | 0.90 (0.80–1.02) | 0.79 (0.72–0.87) ** | 0.90 (0.80–1.01) |
TW | 2 | 0.89 (0.83–0.95) ** | 0.96 (0.85–1.09) | 0.81 (0.74–0.90) ** | 0.95 (0.84–1.07) |
TW | 3 | 0.90 (0.85–0.96) * | 0.94 (0.83–1.07) | 0.82 (0.75–0.91) * | 1.03 (0.92–1.17) |
TW | 4 | 0.98 (0.92–1.04) | 0.99 (0.88–1.12) | 0.91 (0.83–1.00) | 1.03 (0.92–1.16) |
TW | 5 | 1.03 (0.97–1.10) | 1.11 (0.98–1.26) | 0.96 (0.88–1.06) | 0.97 (0.86–1.09) |
TW | 6 | 1.04 (0.98–1.11) | 1.13 (1.01–1.28) | 0.99 (0.90–1.09) | 0.98 (0.87–1.10) |
TW | 7 | 1.05 (0.99–1.12) | 1.16 (1.03–1.30) | 1.06 (0.97–1.16) | 0.96 (0.86–1.08) |
TW | 0–1 | 0.81 (0.76–0.87) ** | 0.89 (0.78–1.02) † | 0.76 (0.68–0.84) ** | 0.85 (0.75–0.96) * |
TW | 5–7 | 1.05 (0.98–1.13) | 1.18 (1.03–1.35) | 1.00 (0.90–1.12) | 0.96 (0.84–1.10) |
Variable | Lag | RR (95% CI) | p | RR † (95% CI) | p † |
---|---|---|---|---|---|
Whole day | |||||
TW | 0–1 | 0.83 (0.78–0.89) | <0.001 | 0.85 (0.79–0.92) | <0.001 |
Δ of TWt between lags of 4–7 and 3 days | 1.10 (1.02–1.18) | 0.014 | 1.10 (1.02–1.19) | 0.014 | |
WS | 6 | 1.01 (1.00–1.01) | 0.005 | 1.01 (1.01–1.02) | <0.001 |
BPL (low BP) | 0–2 | 1.06 (1.02–1.09) | 0.002 | 1.07 (1.03–1.11) | <0.001 |
BPH (high BP) | 4 | 0.96 (0.93–0.99) | 0.017 | 0.95 (0.92–0.99) | 0.012 |
In the morning until before noon | |||||
TW | 0–1 | 0.90 (0.79–1.03) | 0.136 | 0.91 (0.79–1.04 | 0.170 |
TW | 5–7 | 1.20 (1.04–1.38) | 0.014 | 1.18 (1.02–1.37) | 0.030 |
WS below 6.1 kt | 4–6 | 1.04 (1.01–1.08) | 0.019 | 1.05 (1.02–1.09) | 0.007 |
BPL (low BP) | 0–2 | 1.09 (1.02–1.16) | 0.009 | 1.09 (1.02–1.16) | 0.014 |
BPH (high BP) | 4–6 | 0.93 (0.86–1.02) | 0.109 | 0.91 (0.83–0.99) | 0.035 |
BPL (low BP) | 5 | 0.92 (0.86–0.98) | 0.007 | 0.91 (0.85–0.97) | 0.005 |
ΔRH of RH above 82% | 0 | 1.08 (1.02–1.15) | 0.015 | 1.09 (1.02–1.16) | 0.012 |
ΔRH of RH below 82% | 3–4 | 1.05 (1.01–1.09) | 0.010 | 1.05 (1.01–1.13) | 0.009 |
ΔRH of RH below 82% | 6 | 1.08 (1.03–1.13) | 0.001 | 1.08 (1.03–1.13) | 0.001 |
In the afternoon until evening | |||||
TW | 0 | 0.79 (0.71–0.87) | <0.001 | 0.78 (0.70–0.85) | <0.001 |
WS | 6 | 1.01 (1.00–1.02) | 0.023 | 1.01 (1.00–1.02) | 0.017 |
WS below 6.1 kt | 0–4 | 1.05 (1.02–1.08) | 0.001 | 1.07 (1.03–0.10) | <0.001 |
BPL (low BP) | 6 | 1.05 (1.01–1.10) | 0.025 | 1.06 (1.01–1.11) | 0.015 |
At night until early morning | |||||
TW | 0 | 0.86 (0.77–0.97) | 0.014 | 0.88 (0.77–0.99) | 0.035 |
BPH (high BP) | 3 | 0.90 (0.85–0.96) | 0.001 | 0.91 (0.85–0.97) | 0.004 |
RH below 82% | 1 | 1.04 (1.00–1.08) | 0.077 | 1.04 (0.99–1.09) | 0.130 |
RH above 82% | 4 | 0.88 (0.83–0.95) | <0.001 | 0.90 (0.83–0.97) | 0.003 |
Variable | n | Mean | RR (p) | RR †† (p) | RR ††† (95% CI) | p |
---|---|---|---|---|---|---|
Whole day | ||||||
Reference days † | 442 | 18.5 | 1 | 1 | ||
Ap < 4 | 375 | 18.9 | 1.03 (0.116) | 1.04 (0.037) | 1.04 (1.00–1.08) | 0.034 |
Ap ≥ 16 without HSSW | 31 | 18.8 | 1.04 (0.373) | 1.03 (0.528) | 1.02 (0.94–1.12) | |
Ap ≥ 16 with HSSW | 17 | 21.6 | 1.19 (0.001) | 1.20 (0.001) | 1.17 (1.05–1.30) | 0.006 |
HSSW occurring after active-stormy days | 12 | 19.9 | 1.23 (0.002) | 1.14 (0.050) | 1.14 (1.00–1.31) | 0.051 |
2 days after active-stormy GMA level | 34 | 20.1 | 1.09 (0.039) | 1.09 (0.044) | 1.09 (1.00–1.18) | 0.041 |
In the morning until before noon | ||||||
Reference days † | 4.9 | 1 | 1 | |||
Ap < 4 | 4.8 | 0.98 (0.623) | 1.00 (0.886) | 1.00 (0.93–1.07) | ||
Ap ≥ 16 without HSSW | 5.6 | 1.17 (0.046) | 1.19 (0.033) | 1.20 (1.02–1.41) | 0.025 | |
Ap ≥ 16 with HSSW | 6.1 | 1.28 (0.018) | 1.28 (0.014) | 1.24 (1.01–1.53) | 0.043 | |
HSSW occurring after active-stormy days | 4.8 | 1.07 (0.606) | 1.02 (0.862) | 1.01 (0.77–1.33) | ||
2 days after active-stormy GMA level | 5.5 | 1.13 (0.128) | 1.15 (0.078) | 1.15 (0.98–1.34) | 0.078 | |
Ap ≥ 16 | 1.22 (1.07–1.40) | 0.003 | ||||
In the afternoon until evening | ||||||
Reference days † | 8.1 | 1 | 1 | |||
Ap < 4 | 8.5 | 1.06 (0.015) | 1.07 (0.007) | 1.07 (1.02–1.13) | 0.009 | |
Ap ≥ 16 without HSSW | 8.1 | 1.01 (0.930) | 0.97 (0.601) | 0.97 (0.85–1.10) | ||
Ap ≥ 16 with HSSW | 9.5 | 1.16 (0.068) | 1.15 (0.097) | 1.12 (0.95–1.33) | ||
HSSW occurring after active-stormy days | 9.3 | 1.32 (0.006) | 1.21 (0.061) | 1.24 (1.01–1.51) | 0.036 | |
2 days after active-stormy GMA level | 8.7 | 1.07 (0.300) | 1.06 (0.376) | 1.06 (0.94–1.20) | ||
HSSW | 1.14 (1.01–1.31) | 0.045 | ||||
At night until early morning | ||||||
Reference days † | 5.6 | 1 | 1 | |||
Ap < 4 | 5.5 | 0.98 (0.416) | 0.99 (0.840) | 0.98 (0.92–1.05) | ||
Ap ≥ 16 without HSSW | 5.2 | 0.96 (0.633) | 0.96 (0.622) | 0.95 (0.81–1.12) | ||
Ap ≥ 16 with HSSW | 5.7 | 1.06 (0.576) | 1.03 (0.781) | 1.03 (0.84–1.27) | ||
HSSW occurring after active-stormy days | 6.8 | 1.44 (0.002) | 1.32 (0.019) | 1.33 (1.06–1.68) | 0.016 | |
2 days after active-stormy GMA level | 5.0 | 0.91 (0.240) | 0.90 (0.177) | 0.89 (0.76–1.05) |
Age ≤ 65 Years | Age > 65 Years | ||||||
---|---|---|---|---|---|---|---|
Variable | Lag | RR | p | Variable | Lag | RR | p |
Whole day | |||||||
TW | 0–1 | 0.88 | 0.025 | TW | 0–1 | 0.87 | 0.014 |
WS | 6 | 1.02 | <0.001 | T | 0–4 | 0.88 | 0.001 |
BPL | 2 | 1.08 | 0.003 | TW | 5–7 | 1.15 | 0.004 |
ΔBPL | 0 | 1.11 | 0.001 | WS below 6.1 kt | 0–4 | 1.03 | 0.019 |
ΔBPL | 5 | 0.95 | 0.085 | BPL | 0–2 | 1.05 | 0.034 |
RH below 82% | 0 | 1.04 | 0.035 | BPH | 4 | 0.92 | 0.001 |
Ap < 4 | 1.04 | 0.125 | 1.04 | 0.118 | |||
Ap ≥ 16 without HSSW | 1.06 | 0.97 | |||||
Ap ≥ 16 with HSSW | 1.00 | 1.27 | <0.001 | ||||
HSSW occurring after Ap ≥ 16 days | 1.34 | 0.004 | 1.03 | ||||
2 days after Ap ≥ 16 | 1.11 | 0.122 | 1.08 | 0.159 | |||
In the morning until before noon | |||||||
ΔT | 1 | 0.78 | 0.014 | ΔTW | 3–4 | 0.79 | 0.004 |
ΔWS of WS below 6.1 kt | 6 | 1.05 | 0.007 | WS below 6.1 kt | 4–6 | 1.05 | 0.021 |
ΔBPL | 0 | 1.19 | 0.004 | BPL | 0–2 | 1.12 | 0.006 |
ΔBPL | 3–4 | 1.16 | 0.001 | ΔRH of RH below 82% | 3–4 | 1.07 | 0.004 |
BPH | 6 | 0.88 | 0.022 | ΔRH of RH above 82% | 2 | 1.11 | 0.015 |
ΔRH | 0 | 1.08 | 0.003 | ΔRH of RH below 82% | 6 | 1.09 | 0.003 |
ΔRH of RH > 82% | 4 | 0.90 | 0.042 | ||||
Ap < 4 | 1.03 | 0.97 | |||||
Ap ≥ 16 without HSSW | 1.25 | 0.074 | 1.10 | ||||
Ap ≥ 16 with HSSW | 1.18 | 1.32 | 0.032 | ||||
HSSW occurring after Ap ≥ 16 days | 1.44 | 0.053 | 0.74 | 0.146 | |||
2 days after Ap ≥ 16 | 1.04 | 1.19 | 0.072 | ||||
In the afternoon until evening | |||||||
TW | 0–1 | 0.78 | 0.014 | TW | 0–1 | 0.77 | 0.001 |
WS | 6 | 1.02 | <0.001 | TC | 1 | 1.15 | 0.013 |
BPL | 0 | 1.07 | 0.045 | WS below 6.1 kt | 0–4 | 1.07 | 0.001 |
RH below 82% | 0 | 1.07 | 0.023 | BPL | 6 | 1.08 | 0.009 |
RH above 82% | 1 | 0.90 | 0.017 | ||||
ΔRH of RH above 82% | 4 | 1.11 | 0.011 | ||||
Ap < 4 | 1.10 | 0.022 | 1.04 | 0.218 | |||
Ap ≥ 16 without HSSW | 1.01 | 0.90 | 0.219 | ||||
Ap ≥ 16 with HSSW | 0.92 | 1.28 | 0.012 | ||||
HSSW occurring after Ap ≥ 16 days | 1.28 | 0.122 | 1.19 | 0.182 | |||
2 days after Ap ≥ 16 | 1.15 | 0.150 | 0.97 | ||||
At night until early morning | |||||||
TW | 7 | 0.70 | 0.006 | TW | 0 | 0.77 | 0.001 |
T | 7 | 1.17 | 0.037 | ||||
−ΔWS of WS above 6.1 kt | 4 | 1.03 | 0.008 | WS below 6.1 kt | 0 | 1.03 | 0.029 |
BP | 2 | 0.94 | 0.014 | ΔBPH | 1 | 1.16 | 0.011 |
RH | 0 | 1.06 | 0.016 | ΔRH of RH below 82% | 4 | 1.08 | 0.008 |
RH | 6 | 1.08 | 0.002 | RH above 82% | 4 | 0.90 | 0.022 |
RH above 82% | 4 | 0.90 | 0.047 | ||||
Ap < 4 | 0.98 | 1.00 | |||||
Ap ≥ 16 without HSSW | 0.98 | 0.78 | 0.032 | ||||
Ap ≥ 16 with HSSW | 0.91 | 1.04 | |||||
HSSW occurring after Ap ≥ 16 days | 1.35 | 0.107 | 1.32 | 0.075 | |||
2 days after Ap ≥ 16 | 0.87 | 0.289 | 0.90 | 0.315 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vencloviene, J.; Braziene, A.; Dobozinskas, P. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere 2018, 9, 114. https://doi.org/10.3390/atmos9030114
Vencloviene J, Braziene A, Dobozinskas P. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere. 2018; 9(3):114. https://doi.org/10.3390/atmos9030114
Chicago/Turabian StyleVencloviene, Jone, Agne Braziene, and Paulius Dobozinskas. 2018. "Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure" Atmosphere 9, no. 3: 114. https://doi.org/10.3390/atmos9030114
APA StyleVencloviene, J., Braziene, A., & Dobozinskas, P. (2018). Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere, 9(3), 114. https://doi.org/10.3390/atmos9030114