Next Article in Journal
Estimation of Optical Properties for HULIS Aerosols at Anmyeon Island, Korea
Previous Article in Journal
A Diagnosis of Some Dynamical Processes Underlying a Higher-Latitude Typhoon Using the Multiscale Window Transform
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Atmosphere 2017, 8(7), 117; doi:10.3390/atmos8070117

Merging MODIS and Ground-Based Fine Mode Fraction of Aerosols Based on the Geostatistical Data Fusion Method

1
Environment Protection Key Laboratory of Satellite Remote Sensing, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Authors to whom correspondence should be addressed.
Received: 6 April 2017 / Revised: 24 June 2017 / Accepted: 30 June 2017 / Published: 3 July 2017
(This article belongs to the Section Aerosols)
View Full-Text   |   Download PDF [3018 KB, uploaded 10 July 2017]   |  

Abstract

With the rapid development of the economy and society, fine particulate matter (PM2.5) has not only caused severe environmental problems, but also posed a threat to public health. In order to improve the estimated accuracy of PM2.5, the input data fine mode fraction (FMF), a key parameter to the PM2.5 remote sensing method (PMRS), should be improved due to its significant errors. In this study, we merge the observations of the fine mode fraction (FMF) from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Aerosol Robotic Network (AERONET) and the Sun-sky radiometer Observation Network (SONET) using the universal kriging (UK) method to obtain accurate FMF distribution over eastern China. PM2.5 mass concentration is estimated by the fusion and MODIS FMF distributions using the PMRS model. The results show that the parameters in the variogram are relatively stable except for significant differences in correlation lengths in summer. The FMF in the Winter of 2015 shows that the mean error decreases from 0.38 to 0.13 compared with that from MODIS using leave-one-out cross-validation, with the maximum error decreasing from 0.75 to 0.34, indicating that the UK method can provide better estimates of FMF. We also find that PM2.5 estimated from FMF fusion results is closer to the in situ PM2.5 from the Ministry of Environmental Protection (MEP) (87.2 vs. 88.9 μg/m3). View Full-Text
Keywords: FMF; UK fusion; PM2.5; PMRS; MODIS FMF; UK fusion; PM2.5; PMRS; MODIS
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhao, A.; Li, Z.; Zhang, Y.; Zhang, Y.; Li, D. Merging MODIS and Ground-Based Fine Mode Fraction of Aerosols Based on the Geostatistical Data Fusion Method. Atmosphere 2017, 8, 117.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top