Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models
Abstract
1. Introduction
2. Previous Urban Heat Island and Land Cover Research
3. Experiments
4. Results
4.1. Two-Dimensional and Three-Dimensional Land Cover Charaterization Approaches
4.2. Explanatory Power of Two-Dimensional and Three-Dimensional Approaches
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
SPSS Elastic Net Regression Analysis compared with OLS Regression, Model 3 at 2 am | Standardized Coefficients (Beta) | |||||||
Ridge Penalty | Lasso Penalty | Adjusted R2 (Mean Squared Error) | Neighborhood Number | Percent Impervious | Percent Tree Canopy | Aspect Ratio | Orientation | |
Selected Elastic Net Model 3 at 2 am, two-dimensional, Step 560 | 1.0 | 0.98 | 0.688 (0.371) | 0.000 | 0.196 | −0.191 | 0.199 | 0.000 |
OLS Regression Model 3 at 2am, two-dimensional | 0.642 (0.881) | −0.201 | 1.112 | 0.473 | 0.122 | −0.137 | ||
Selected Elastic Net Model 3 at 2 am, three-dimensional, Step 560 | 1.0 | 0.98 | 0.690 (0.369) | 0.000 | 0.200 | −0.189 | 0.197 | 0.000 |
OLS Regression Model 3 at 2 am, three-dimensional | 0.676 (0.839) | −0.043 | 0.818 | −0.190 | −0.192 | 0.062 | ||
SPSS Elastic Net Regression Analysis compared with OLS Regression, Model 3 at 4 pm | Standardized Coefficients (Beta) | |||||||
Ridge Penalty | Lasso Penalty | Adjusted R2 (Mean Squared Error) | Neighborhood Number | % Impervious Surface | % Tree Canopy | Distance to Industry | Upwind % Tree Canopy | |
Selected Elastic Net Model 3 at 4 pm, two-dimensional, Step 98 | 0.20 | 0.04 | 0.217 (.823) | 0.134 | −0.270 | −0.175 | −0.244 | −0.179 |
OLS Regression Model 3, at 4 pm, two-dimensional | 0.262 (1.181) | −0.053 | −0.523 | −0.509 | −0.086 | −0.423 | ||
Selected Elastic Net Model 3 at 4pm, three-dimensional, step 466 | 0.90 | 0.86 | 0.220 (0.701) | 0.000 | 0.000 | 0.000 | −0.056 | 0.000 |
OLS Regression Model 3 at 4 pm, three-dimensional | 0.255 (1.187) | −0.072 | −0.199 | −0.097 | −0.506 | −0.083 |
References
- Stone, B.J. The City and the Coming Climate: Climate Change in the Places We Live; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Gartland, L. Heat islands: Understanding and Mitigating Heat in Urban Areas; Earthscan: Sterling, VA, USA, 2008. [Google Scholar]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Memon, A.R.; Leung, D.Y.C.; Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar]
- O’Neill, M.S.; Zanobetti, A.; Schwartz, J. Disparities by race in heat-related mortality in four US cities: The role of air conditioning prevalence. J. Urban Heal. 2005, 82, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Urban Heat Island Mitigation. Retrieved. 2012. Available online: http://www.epa.gov/hiri/mitigation/index.htm (accessed on 7 January 2012).
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Hough, M. Cities and Natural Processes; Routledge: New York, NY, USA, 2004. [Google Scholar]
- Alberti, M. Advances in Urban Ecology; Spring: New York, NY, USA, 2008. [Google Scholar]
- U.S. Environmental Protection Agency. Heat Island Impacts. 2012. Available online: http://www.epa.gov/hiri/impacts/index.htm (accessed on 11 May 2012).
- Zhang, K.; Oswald, E.M.; Brown, D.G.; Brines, S.J.; Gronlund, C.J.; White-Newsome, J.L.; Rood, R.B.; O’neill, M.S. Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region. Environ. Res. 2011, 111, 1046–1053. [Google Scholar] [CrossRef]
- Stone, B., Jr.; Rodgers, M.O. Urban Form and Thermal Efficiency: How the design of cities influences the urban heat island effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [Google Scholar] [CrossRef]
- Coutts, A.; Beringer, J.; Tapper, N.J. Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne, Australia. J. Appl. Meteorol. Climatol. 2007, 46, 477–493. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. Computers, Environment and Urban Systems The urban heat island effect and city contiguity. CEUS 2015, 54, 181–194. [Google Scholar]
- Akbari, H.; Shea Rose, L.; Taha, H. Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc. Urban Plan. 2003, 63, 1–14. [Google Scholar] [CrossRef]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies, Cool Pavements. 2012. Available online: www.epa.gov/hiri/resources/pdf/CoolPavesCompendium.pdf (accessed on 11 May 2012).
- Synnefa, A.; Santamouris, M.; Apostolakis, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol. Energy 2007, 81, 488–497. [Google Scholar] [CrossRef]
- Golden, J.S.; Kaloush, K.E. Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects. Int. J. Pavement Eng. 2006, 7, 37–52. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; University Press: Cambridge, UK, 1987. [Google Scholar]
- Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 2016, 186, 637–651. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Geiger, P.; Aron, R.H.; Todhunter, P. The Climate near the Ground; Rowman & Littlefield Publishers Inc.: Lanham, MD, USA, 2009. [Google Scholar]
- Konarska, J.; Lindberg, F.; Larsson, A.; Thorsson, S.; Holmer, B. Transmissivity of solar radiation through crowns of single urban trees-application for outdoor thermal comfort modelling. Theor. Appl. Climatol. 2014, 117, 363–376. [Google Scholar] [CrossRef]
- Matsuoka, M.; Hayasaka, T.; Fukushima, Y.; Honda, Y. Land cover in East Asia classified using terra MODIS and DMSP OLS products. Int. J. Remote Sens. 2007, 28, 221–248. [Google Scholar] [CrossRef]
- Akbari, H.; Rose, L.S. Characterizing the Fabric of the Urban Environment: A Case Study of Metropolitan Chicago, Illinois; Lawrence Berkeley National Laboratory Report LBNL-49275: Berkeley, CA, USA, 2001; pp. 1–64. [Google Scholar]
- Akbari, H.; Rose, L.S. Characterizing the Fabric of the Urban Environment: A Case Study of Salt Lake City, Utah; Lawrence Berkeley National Laboratory Report LBNL- 47851: Berkeley, CA, USA, 2001; pp. 1–51. [Google Scholar]
- Rose, L.S.; Akbari, H.; Taha, H. Characterizing the Fabric of the Urban Environment: A Case Study of Greater Houston, Texas; U.S. Environmental Protection Agency under the Urban Heat Island Pilot Project, University of California: Berkeley, CA, USA, 2003; pp. 1–64.
- Geneletti, D.; Gorte, B.G.H. International Journal of Remote Sensing A method for object-oriented land cover classification combining Landsat TM data and aerial photographs. Int. J. Remote Sens. 2003, 24, 1273–1286. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y. Landscape and Urban Planning Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Kim, G.; Coseo, P. Urban Park Systems to Support Sustainability: The Role of Urban Park Systems in Hot Arid Urban Climates. Forests 2018, 9, 439. [Google Scholar] [CrossRef]
- Solecki, W.D.; Rosenzweig, C.; Parshall, L.; Pope, G.; Clark, M.; Cox, J.; Wiencke, M. Mitigation of the heat island effect in urban New Jersey. Environ. Hazards 2005, 6, 39–49. [Google Scholar] [CrossRef]
- Nichol, J.; Wong, M.S. Modeling urban environmental quality in a tropical city. Landsc. Urban Plan. 2005, 73, 49–58. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Therm. Remote Sens. Urban Areas 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S.; Theuray, N.; Lindley, S.J. Characterising the urban environment of UK cities and towns: A template for landscape planning. Landsc. Urban Plan. 2008, 87, 210–222. [Google Scholar] [CrossRef]
- Gray, K.A.; Finster, M.E. The Urban Heat Island, Photochemical Smog, and Chicago: Local Features of the Problem and Solution. Available online: https://www.coolrooftoolkit.org/wp-content/uploads/2015/01/Chicago-UHI-EPA.pdf (accessed on 1 July 2012).
- Li, G.; Weng, Q. Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. Int. J. Remote Sens. 2007, 28, 249–267. [Google Scholar] [CrossRef]
- Liang, B.; Weng, Q. Assessing Urban Environmental Quality Change of Indianapolis, United States, by the Remote Sensing and GIS Integration. IEEE J. Sel. Top. Appl. EARTH Obs. Remote Sens. 2011, 4, 43–55. [Google Scholar] [CrossRef]
- Mcpherson, E.G.; Nowak, D.J.; Rowntree, R.A.; Gregory, E.; David, J.; Rowan, A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; Gen. Tech. Rep. NE-186; US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1994; 201p.
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover in the United States. Landsc. Urban Plan. 2012, 107, 21–30. [Google Scholar] [CrossRef]
- Nowak, D.J.; Rowntree, R.A.; McPherson, E.G.; Sisinni, S.M.; Kerkmann, E.R.; Stevens, J.C. Measuring and analyzing urban tree cover. Landsc. Urban Plan. 1996, 36, 49–57. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- US Census Bureau. Chicago 2010 US Census Population Information. Available online: http://2010.census.gov/2010census/ (accessed on 7 January 2012).
- USGS. Earth Explorer Web Tool. Available online: http://earthexplorer.usgs.gov/ (accessed on 7 January 2012).
- USGS. Elevations and Distances in the United States. Available online: https://pubs.usgs.gov/gip/70039193/report.pdf (accessed on 1 July 2012).
- Hayhoe, K.; Sheridan, S.; Kalkstein, L.; Greene, S. Climate change, heat waves, and mortality projections for Chicago. J. Great Lakes Res. 2010, 36, 65–73. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Hayhoe, K.; Parzen, J. Introduction: Assessing the effects of climate change on Chicago and the Great Lakes. J. Great Lakes Res. 2010, 36, 1–6. [Google Scholar] [CrossRef]
- Hayhoe, K.; Vandorn, J.; Croley, T.; Schlegal, N.; Wuebbles, D. Regional climate change projections for Chicago and the US Great Lakes. JGLR 2010, 36, 7–21. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. Cooling the Heat Island in Compact Urban Environments: The Effectiveness of Chicago’s Green Alley Program. Procedia Eng. 2015, 118, 691–710. [Google Scholar] [CrossRef]
- Sharma, A.; Conry, P.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Chen, F. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ. Res. Lett. 2016, 11, 064004. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Attarian, J. Infrastructure for Great Cities: Illinois Sustainable Cities Symposium, standingupforillinois.org. 2008. Available online: http://www.standingupforillinois.org/pdf/green/AttarianSCS.pdf (accessed on 21 January 2008).
- Chicago of City. Elevated Surface Temperature Maps; Chicago of City: Chicago, IL, USA, 2006. [Google Scholar]
- Onset. HOBO Data Loggers. Available online: http://www.onsetcomp.com/ (accessed on 7 January 2012).
- Oke, T.R. Initial guidance to obtain representative meteorological observations at urban sites. World Meteorol. Organ. 2004, 81, 51. [Google Scholar]
- MetroWest. Weather data. 2010. Available online: http://mesowest.utah.edu/index.html (accessed on 12 December 2012).
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Unger, J.; Savic, S.; Gal, T. Modelling of the Annual Mean Urban Heat Island Pattern for Planning of Representative Urban Climate Station Network. Adv. Meteorol. 2011, 2011. [Google Scholar] [CrossRef]
- Wicki, A.; Parlow, E.; Feigenwinter, C. Evaluation and Modeling of Urban Heat Island Intensity in Basel, Switzerland. Climate 2018, 6, 55. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Hu, J.; Dong, L. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE 2014, 9, e102124. [Google Scholar] [CrossRef] [PubMed]
- O’brien, R.M.O. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Huang, C.; Townshend, J.R.G. A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover. Int. J. Remote. Sens. 2003, 24, 75–90. [Google Scholar] [CrossRef]
- O’Neil-dunne, J.; Macfaden, S.; Royar, A. A Versatile, Production-Oriented Approach to High-Resolution Tree-Canopy Mapping in Urban and Suburban Landscapes Using GEOBIA and Data Fusion. Remote. Sens. 2014, 6, 12837–12865. [Google Scholar] [CrossRef]
- Zhang, Y. Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression. Landsc. Ecol. 2019, 34, 681–697. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
Common Name | Genus Species | % Reflectance | % Absorption | % Transmission |
---|---|---|---|---|
Green Ash | Fraxinus Pennsylvanica | 31 | 51 | 18 |
Cottonwood | Populus Deltoides | 24 | 50 | 26 |
Silver Maple | Acer Saccharinum | 23 | 48 | 29 |
Tulip Tree | Liriodendron Tulipifera | 24 | 52 | 24 |
White Oak | Quercus Alba | 22 | 44 | 34 |
Authors | City or Region | Type of Image | Pixel Resolution (m) | Ground Survey | Two-Dimensional | Three-Dimensional |
---|---|---|---|---|---|---|
Akbari et al., 2003 [18] | Sacramento, CA | Orthoimagery | 0.3 | X | ||
Akbari and Rose, 2001 [29] | Chicago, IL | Orthoimagery | 0.3 | X | ||
Akbari and Rose, 2001[30] | Salt Lake City, UT | Orthoimagery | 0.3 | X | ||
Chang et al., 2007 [34] | Taipei City, Taiwan | Ground survey and aerials | NS* | X | X | |
Chen et al., 2006 [38] | Pearl River Delta, China | IKONOS 2000 | 4 | X | ||
Geneletti and Gorte, 2003 [32] | Trento, Italy | Landsat TM and Orthoimagery | (Landsat), 7.5 m (Ortho) | X | X | X |
Gill et al., 2008 [39] | Manchester, England | “Cities Revealed” Aerial | 0.25 | X | ||
Gray and Finster, 2000 [40] | Chicago, IL | Orthoimagery | 0.3 | X | ||
Imhoff et al., 2010 [3] | 38 Bioregions | Landsat 7 ETM+ and IKONOS | 30 (Landsat), 4(IKONOS) | X | ||
Li and Weng, 2007 [41] | Indianapolis, IN | Landsat 7 ETM+ | NS* | |||
Liang and Weng, 2011 [42] | Indianapolis, IN | Landsat 7 TM and ETM+ | NS* | |||
Matsuoka et al., 2007 [28] | Yellow River, China | MODIS and OLS | 250 (MODIS), 2,700 (OLS) | |||
McPherson et al., 1994 [43] | Chicago, IL | Satellite and Aerials | NS* | X | X | |
Nichol and Wong, 2005 [37] | Hong Kong | IKONOS | 4 | X | ||
Nowak and Greenfield, 2012 [44] | 20 U.S. Cities | Aerials | 0.15 - 2 | X | ||
Nowak et al., 1996 [45] | 58 U.S. Cities | Aerials | NS* | X | ||
Rose et al., 2003 [31] | Houston, TX | Orthoimagery | 0.3 | X | ||
Solecki et al., 2005 [36] | Newark and | Aerials | NS* | X | ||
Yuan and Bauer, 2007 [46] | Minneapolis, MN | Landsat 5 TM, Landsat 7 ETM+, and Orthoimagery | 120 (Landsat 5), 60 (Landsat 7), 1 (Ortho) | X |
Land Cover Type | Average % for 20 Cities* in 2009 | Average % for Chicago in 2009 | Change in % Between 2005 and 2009 for 20 Cities | Change in % Between 2005 and 2009 for Chicago |
---|---|---|---|---|
Grass/Herbaceous Cover | 24.7% | 20.7% | 0.5 | −0.1 |
Tree/Shrub Cover | 28.2% | 18.0% | −1.5 | −0.5 |
Impervious Buildings | 15.9% | 26.8% | 0.3 | −0.3 |
Impervious Roads | 12.3% | 12.1% | 0.3 | 0.0 |
Impervious Other | 14.8% | 19.6% | 0.8 | 0.3 |
Water | 0.1% | 0.2% | 0.1 | 0.2 |
Bare Soil | 4.0% | 2.6% | −0.3 | 0.4 |
Total | 100% | 100% | ||
* 20 cities included in the study: Albuquerque, NM Atlanta, GA Baltimore, MD Boston, MA | Chicago, IL Denver, CO Detroit, MI Houston, TX Kansas City, MO Los Angeles, CA | Miami, FL Minneapolis, MN Nashville, TN New Orleans, LA New York, NY | Pittsburgh, PA Portland, OR Spokane, WA Syracuse, NY Tacoma, WA |
Impervious Cover-type (Percent of Total Cover) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Impervious Surface Area * | Roof | Road | Parking Area | Sidewalk/Driveway | Private Paved Surfaces (2-D Not Calculated) | Miscellaneous | |||||||||||||
2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 3-D | 2-D | 3-D | (%Δ) | |
Garfield Park | 50.3 | 52.9 | (+2.6) | 19.2 | 19.2 | (+0.0) | 13.8 | 15.0 | (+1.2) | 3.7 | 3.7 | (+0.0) | 7.1 | 7.1 | (+0.0) | 3.1 | 6.5 | 4.8 | (-1.7) |
Lincoln Park | 61.9 | 69.4 | (+7.5) | 33.8 | 33.8 | (+0.0) | 17.4 | 18.5 | (+1.1) | 3.6 | 4.3 | (+0.7) | 4.6 | 4.6 | (+0.0) | 0.0 | 2.5 | 8.2 | (+5.7) |
Pilsen | 69.3 | 71.3 | (+2) | 34.4 | 34.4 | (+0.0) | 22.1 | 22.3 | (+0.2) | 3.7 | 4.0 | (+0.3) | 7.7 | 7.7 | (+0.0) | 0.3 | 1.4 | 2.6 | (+1.2) |
Rodgers Park | 50 | 52.5 | (+2.5) | 28.2 | 28.2 | (+0.0) | 11.7 | 12.4 | (+0.7) | 5.2 | 5.4 | (+0.2) | 3.6 | 4.7 | (+1.1) | 0.8 | 1.3 | 0.5 | (-0.8) |
Wrigleyville | 65 | 75.6 | (+10.6) | 32.4 | 32.4 | (+0.0) | 20.3 | 23.3 | (+3.0) | 4.2 | 4.2 | (+0.0) | 4.8 | 4.8 | (+0.0) | 0.6 | 3.3 | 10.6 | (+7.3) |
Total Pervious Surface Area ** | Tree Cover | Grass | Barren Land | ||||||||||||||||
2-D | 3-D | (%Δ) | 2-D | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | ||||||||||
Garfield Park | 49.7 | 47.2 | (-2.5) | 5.9 | 35.3 | 38.7 | (+3.4) | 8.5 | 8.5 | (+0.0) | |||||||||
Lincoln Park | 38 | 30.6 | (-7.4) | 8.5 | 29.5 | 30.6 | (+1.1) | 0.0 | 0.0 | (+0.0) | |||||||||
Pilsen | 30.6 | 28.6 | (-2) | 3.7 | 25.2 | 26.9 | (+1.7) | 1.7 | 1.7 | (+0.0) | |||||||||
Rodgers Park | 49.9 | 47.9 | (-2) | 9.8 | 37.8 | 45.1 | (+7.3) | 2.3 | 2.8 | (+0.5) | |||||||||
Wrigleyville | 34.8 | 23.9 | (-10.9) | 13.0 | 21.2 | 23.3 | (+2.1) | 0.6 | 0.6 | (+0.0) |
Neighborhood | Density | Block Area | Impervious Surface Area | Pervious Surface Area | Tree Canopy Area | |||
---|---|---|---|---|---|---|---|---|
units/hectare | m2 | m2 | (% impervious) | m2 | (% pervious) | m2 | (% canopy) | |
Wicker Park | 47.4 | 13,462 | 12,879 | (95.7%) | 579 | (4.3%) | 637 | (4.7%) |
Bronzeville | 35.7 | 40,162 | 32,086 | (79.9%) | 8,073 | (20.1%) | 7,425 | (18.5%) |
Austin | 35.3 | 19,794 | 14,873 | (75.1%) | 4,929 | (24.9%) | 3,906 | (19.7%) |
Little Italy | 30.9 | 20,604 | 19,436 | (94.3%) | 1,174 | (5.7%) | 6,062 | (29.4%) |
Logan Square | 27 | 25,821 | 22,739 | (88.1%) | 3,073 | (11.9%) | 3,415 | (13.2%) |
Belmont Cragin | 26 | 23,219 | 18,104 | (78.0%) | 5,108 | (22.0%) | 4,212 | (18.1%) |
East Side | 19.2 | 19,468 | 14,325 | (73.6%) | 5,140 | (26.4%) | 4,501 | (23.1%) |
Beverly | 14.3 | 22,678 | 12,391 | (54.6%) | 10,296 | (45.4%) | 13,702 | (60.4%) |
Average | 32 | 23,151 | 18,354 | (79.3%) | 4,796 | (20.7%) | 5,482 | (23.7%) |
Cover-type (percent of total cover for two-dimensional and percent increase using three-dimensional) | |||||||||||||||||||
Neighborhood | % Impervious Surface Area | % Roof | % Road | % Alley | % Sidewalks, Driveways, and Parking Lots | Tree Canopy | Pervious Surface Area | ||||||||||||
2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 3-D | (%Δ) | 2-D | 2-D | 3-D | (%Δ) | |
Little Italy | 66.5 | 94.3 | (+27.8) | 38.3 | 39.1 | (+0.8) | 3.2 | 17.3 | (+14.1) | 4.1 | 4.2 | (+0.1) | 20.9 | 33.7 | (+12.8) | 29.4 | 4.1 | 5.7 | (+1.6) |
Beverly | 28.9 | 54.6 | (+25.7) | 16.3 | 22.9 | (+6.6) | 4.5 | 11.6 | (+7.1) | 1.6 | 4.7 | (+3.1) | 6.5 | 15.6 | (+9.1) | 60.4 | 10.7 | 45.4 | (+34.7) |
East Side | 59.8 | 73.6 | (+13.8) | 31 | 31.9 | (+0.9) | 7.5 | 14.5 | (+7) | 3.7 | 3.8 | (+0.1) | 17.6 | 23.5 | (+5.9) | 23.1 | 17.1 | 26.4 | (+9.3) |
Belmont Cragin | 66.2 | 78 | (+11.8) | 36.9 | 37.9 | (+1) | 6.7 | 13.3 | (+6.6) | 4 | 4.1 | (+0.1) | 18.6 | 22.7 | (+4.1) | 18.1 | 15.7 | 22.1 | (+6.4) |
Bronzeville | 69.5 | 79.9 | (+10.4) | 21.6 | 21.8 | (+0.2) | 12.6 | 16.9 | (+4.3) | 4.2 | 4.5 | (+0.3) | 31.2 | 36.8 | (+5.6) | 18.5 | 12 | 20.1 | (+8.1) |
Austin | 65.5 | 75.1 | (+9.6) | 27.1 | 28.2 | (+1.1) | 10.9 | 14.4 | (+3.5) | 4.1 | 4.2 | (+0.1) | 23.4 | 28.4 | (+5) | 19.7 | 14.8 | 24.9 | (+10.1) |
Logan Square | 78.8 | 88.1 | (+9.3) | 37.3 | 37.9 | (+0.6) | 11.9 | 16.8 | (+4.9) | 7 | 7.01 | (+0.01) | 22.6 | 26.4 | (+3.8) | 13.2 | 8 | 12 | (+4) |
Wicker Park | 91.4 | 95.7 | (+4.3) | 34 | 34.02 | (+0.02) | 23.8 | 24.9 | (+1.1) | 6.2 | 6.3 | (+0.1) | 27.4 | 30.4 | (+3) | 4.7 | 3.9 | 4.4 | (+0.5) |
Average | 65.8 | 79.9 | (+14.1) ** | 30.3 | 31.7 | (+1.4) | 10.1 | 16.2 | (+6.1) | 4.4 | 4.9 | (+0.5) | 21 | 27.2 | (+6.2) | 23.4 | 10.8 | 20.1 | (+9.3) |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.12*** | 0.05 | −0.23 | −0.09** | 0.03 | −0.17 | −0.11*** | 0.04 | −0.20 |
% two-dimensional Impervious | 10.41*** | 1.90 | 1.19 | 9.75* | 4.70 | 1.11 | |||
% Tree Canopy | 4.13* | 2.05 | 0.44 | 4.47 | 4.01 | 0.47 | |||
Aspect Ratio | 1.01 | 1.75 | 0.12 | ||||||
Orientation | −0.40 | 0.31 | −0.14 | ||||||
(Constant) | 1.58* | 0.31 | −6.41*** | 1.73 | −6.17 | 3.51 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | 0.04 | 0.64*** | 0.64 | ||||||
Change in R2 | 0.60 | 0.01 |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.12* | 0.05 | −0.23 | −0.05 | 0.03 | −0.09 | −0.02 | 0.04 | −0.04 |
% three-dimensional Impervious | 7.42*** | 1.12 | 0.63 | 9.66*** | 2.58 | 0.82 | |||
% Tree Canopy | −2.07* | 0.88 | −0.22 | −1.80 | 1.04 | −0.19 | |||
Aspect Ratio | −1.58 | 1.74 | −0.19 | ||||||
Orientation | 0.18 | 0.35 | 0.06 | ||||||
(Constant) | 1.58*** | 0.31 | −4.23*** | 1.11 | −5.67*** | 1.84 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | 0.04 | 0.68*** | 0.68 | ||||||
Change in R2 | 0.64 | 0.00 |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.05 | 0.05 | −0.10 | −0.03 | 0.05 | −0.06 | −0.03 | 0.05 | −0.05 |
% two-dimensional Impervious | −5.84* | 2.64 | −0.71 | −4.27 | 2.92 | −0.52 | |||
% Tree Canopy | −9.85*** | 2.84 | −1.12 | −4.49 | 5.21 | −0.51 | |||
Distance to Industry | −0.37* | 0.16 | −0.42 | ||||||
Upwind % Tree Canopy | −0.01 | 0.04 | −0.09 | ||||||
(Constant) | 1.86*** | 0.29 | 7.93* | 2.40 | 6.62* | 2.56 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | −0.00 | 0.21*** | 0.26* | ||||||
Change in R2 | 0.23 | 0.07 |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | B | SE | Beta | B | SE | Beta | |
Neighborhood | −0.05 | 0.05 | −0.10 | −0.04 | 0.05 | −0.08 | −0.036 | 0.049 | −0.072 |
% three-dimensional Impervious | −1.38 | 1.68 | −0.13 | −2.10 | 1.97 | −0.20 | |||
% Tree Canopy | −4.65*** | 1.32 | −0.53 | -0.86 | 3.75 | −0.10 | |||
Distance to Industry | −0.45* | 0.18 | −0.51 | ||||||
Upwind % Tree Canopy | −0.01 | 0.05 | −0.08 | ||||||
(Constant) | 1.86*** | 0.29 | 4.00* | 1.66 | 4.92** | 1.83 | |||
n | 96 | 96 | 96 | ||||||
Adjusted R2 | −0.00 | 0.17*** | 0.26*** | ||||||
Change in R2 | 0.19 | 0.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coseo, P.; Larsen, L. Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models. Atmosphere 2019, 10, 347. https://doi.org/10.3390/atmos10060347
Coseo P, Larsen L. Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models. Atmosphere. 2019; 10(6):347. https://doi.org/10.3390/atmos10060347
Chicago/Turabian StyleCoseo, Paul, and Larissa Larsen. 2019. "Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models" Atmosphere 10, no. 6: 347. https://doi.org/10.3390/atmos10060347
APA StyleCoseo, P., & Larsen, L. (2019). Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models. Atmosphere, 10(6), 347. https://doi.org/10.3390/atmos10060347