Phosphodiesterase 4B: Master Regulator of Brain Signaling
Abstract
:1. Introduction
2. Structure and Activation of PDE4B Enzymes
3. Role of PDE4 Isoforms in Cognitive Function and Memory
4. The DISC1-PDE4B Signalosome in Schizophrenia
5. PDE4B in Neuroinflammation
6. Conclusions
Funding
Conflicts of Interest
References
- Francis, S.H.; Busch, J.L.; Corbin, J.D. cGMP-Dependent Protein Kinases and cGMP Phosphodiesterases in Nitric Oxide and cGMP Action. Pharmacol. Rev. 2010, 62, 525–563. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, H.-T.; O’Donnell, J.M. Phosphodiesterases in the Central Nervous System: Implications in Mood and Cognitive Disorders. In Phosphodiesterases as Drug Targets; Francis, S.H., Conti, M., Houslay, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 447–485. [Google Scholar]
- Sakamoto, K.; Karelina, K.; Obrietan, K. CREB: A multifaceted regulator of neuronal plasticity and protection. J. Neurochem. 2011, 116, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, M.P.; Adamowicz, W.; Bove, S.; Hartman, A.J.; Mariga, A.; Pathak, G.; Reinhart, V.; Romegialli, A.; Kleiman, R.J. Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell. Signal. 2014, 26, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Beavo, J.A.; Brunton, L.L. Cyclic nucleotide research—Still expanding after half a century. Nat. Rev. Mol. Cell Biol. 2002, 3, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, V.O.; Lohse, M.J. Monitoring of cAMP Synthesis and Degradation in Living Cells. Physiology 2006, 21, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, D.; Cooper, D.M.F. Live-cell imaging of cAMP dynamics. Nat. Methods 2008, 5, 29–36. [Google Scholar] [CrossRef]
- Baillie, G.S. Compartmentalized signalling: Spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J. 2009, 276, 1790–1799. [Google Scholar] [CrossRef]
- Edwards, H.V.; Christian, F.; Baillie, G. cAMP: Novel concepts in compartmentalised signalling. Semin. Cell Dev. Boil. 2012, 23, 181–190. [Google Scholar] [CrossRef]
- Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol. Rev. 2011, 91, 651–690. [Google Scholar] [CrossRef] [Green Version]
- McCahill, A.C.; Huston, E.; Li, X.; Houslay, M. PDE4 Associates with Different Scaffolding Proteins: Modulating Interactions as Treatment for Certain Diseases. In Protein-Protein Interactions as New Drug Targets; Klussmann, E., Scott, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 125–166. [Google Scholar]
- Bender, A.T.; Beavo, J.A. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef]
- Conti, M.; Beavo, J. Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling. Annu. Rev. Biochem. 2007, 76, 481–511. [Google Scholar] [CrossRef] [PubMed]
- Zaccolo, M.; Di Benedetto, G.; Lissandron, V.; Mancuso, L.; Terrin, A.; Zamparo, I. Restricted diffusion of a freely diffusible second messenger: Mechanisms underlying compartmentalized cAMP signalling. Biochem. Soc. Trans. 2006, 34, 495–497. [Google Scholar] [CrossRef]
- Terrin, A.; Di Benedetto, G.; Pertegato, V.; Cheung, Y.-F.; Baillie, G.; Lynch, M.J.; Elvassore, N.; Prinz, A.; Herberg, F.W.; Houslay, M.; et al. PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: Role of compartmentalized phosphodiesterases. J. Cell Boil. 2006, 175, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.F.; Terrin, A.; Di Benedetto, G.; Cannon, R.C.; Koh, W.; Kim, M.; Zaccolo, M.; Blackwell, K.T. The Role of Type 4 Phosphodiesterases in Generating Microdomains of cAMP: Large Scale Stochastic Simulations. PLoS ONE 2010, 5, e11725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, S.H.; Houslay, M.D.; Conti, M. (Eds.) Phosphodiesterase Inhibitors: Factors That Influence Potency, Selectivity, and Action. In Phosphodiesterases as Drug Targets; Springer: Berlin/Heidelberg, Germany, 2011; pp. 47–84. [Google Scholar]
- Pérez-Torres, S.; Miró, X.; Palacios, J.M.; Cortés, R.; Puigdoménech, P.; Mengod, G. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography: Comparison with monkey and rat brain. J. Chem. Neuroanat. 2000, 20, 349–374. [Google Scholar] [CrossRef] [Green Version]
- Wachtel, H. Characteristic behavioral alterations in rats induced by rolipram and other selective adenosine cyclic 3′,5′-monophosphate phosphodiesterase inhibitors. Psychopharmacology 1982, 77, 309–316. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.M.; Zhang, H.-T. Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol. Sci. 2004, 25, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Souness, J.E.; Aldous, D.; Sargent, C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology 2000, 47, 127–162. [Google Scholar] [CrossRef]
- Atkins, C.; Oliva, A.A.; Alonso, O.F.; Pearse, D.D.; Bramlett, H.M.; Dietrich, W.D. Modulation of the cAMP signaling pathway after traumatic brain injury. Exp. Neurol. 2007, 208, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Millar, J.K. DISC1 and PDE4B Are Interacting Genetic Factors in Schizophrenia That Regulate cAMP Signaling. J. Physiol. 2005, 310, 1187–1191. [Google Scholar] [CrossRef]
- McGirr, A.; Lipina, T.V.; Mun, H.-S.; Georgiou, J.; Al-Amri, A.H.; Ng, E.; Zhai, D.; Elliott, C.; Cameron, R.T.; Mullins, J.; et al. Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology 2015, 41, 1080. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.M.; Gurney, M.E.; Dietrich, W.D.; Atkins, C. Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury. PLoS ONE 2017, 12, e0178013. [Google Scholar] [CrossRef] [PubMed]
- Tibbo, A.J.; Tejeda, G.S.; Baillie, G. Understanding PDE4’s function in Alzheimer’s disease; a target for novel therapeutic approaches. Biochem. Soc. Trans. 2019, 47, 1557–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokland, A.; Schreiber, R.; Prickaerts, J. Improving Memory: A Role for Phosphodiesterases. Curr. Pharm. Des. 2006, 12, 2511–2523. [Google Scholar] [CrossRef]
- Blokland, A.; Menniti, F.S.; Prickaerts, J. PDE Inhibition and cognition enhancement. Expert Opin. Ther. Pat. 2012, 22, 349–354. [Google Scholar] [CrossRef]
- Bradshaw, N.J.; Ogawa, F.; Antolin-Fontes, B.; Chubb, J.E.; Carlyle, B.C.; Christie, S.; Claessens, A.; Porteous, D.J.; Millar, J.K. DISC1, PDE4B, and NDE1 at the centrosome and synapse. Biochem. Biophys. Res. Commun. 2008, 377, 1091–1096. [Google Scholar] [CrossRef]
- Titus, D.; Furones, C.; Kang, Y.; Atkins, C. Age-dependent alterations in cAMP signaling contribute to synaptic plasticity deficits following traumatic brain injury. Neuroscience 2013, 231, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Irisarri, E.; Sanchez, A.J.; García-Merino, J.A.; Mengod, G. Selective Induction of cAMP Phosphodiesterase PDE4B2 Expression in Experimental Autoimmune Encephalomyelitis. J. Neuropathol. Exp. Neurol. 2007, 66, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Houslay, M.D. PDE4 cAMP-specific phosphodiesterases. Prog. Nucleic Acid Res. Mol. Biol. 2001, 69, 249–315. [Google Scholar]
- Houslay, M.; Baillie, G.; Maurice, D.H. cAMP-Specific Phosphodiesterase-4 Enzymes in the Cardiovascular System. Circ. Res. 2007, 100, 950–966. [Google Scholar] [CrossRef]
- Cheung, Y.-F.; Kan, Z.; Garrett-Engele, P.; Gall, I.; Murdoch, H.; Baillie, G.; Camargo, L.M.; Johnson, J.M.; Houslay, M.; Castle, J.C. PDE4B5, a Novel, Super-Short, Brain-Specific cAMP Phosphodiesterase-4 Variant Whose Isoform-Specifying N-Terminal Region Is Identical to That of cAMP Phosphodiesterase-4D6 (PDE4D6). J. Pharmacol. Exp. Ther. 2007, 322, 600. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.; King, D.P.; Reutiman, T.J.; Folsom, T.D.; Laurence, J.A.; Lee, S.; Fan, Y.-T.; Paciga, S.A.; Conti, M.; Menniti, F.S. PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia. Schizophr. Res. 2008, 101, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Sheperd, M. Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform. Biochem. J. 2003, 370, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cedervall, P.; Aulabaugh, A.; Geoghegan, K.F.; McLellan, T.J.; Pandit, J. Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. Proc. Natl. Acad. Sci. USA 2015, 112, E1414–E1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baillie, G.; MacKenzie, S.J.; McPhee, I.; Houslay, M. Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases. Br. J. Pharmacol. 2000, 131, 811–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houslay, M.; Adams, D.R. PDE4 cAMP phosphodiesterases: Modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem. J. 2003, 370, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Blackman, B.; Scheitrum, C.; Mika, D.; Blanchard, E.; Lei, T.; Conti, M.; Richter, W. The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s). Biochem. J. 2014, 459, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Richter, W.; Conti, M. Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J. Boil. Chem. 2002, 277, 40212–40221. [Google Scholar] [CrossRef] [Green Version]
- Richter, W.; Conti, M. The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases. J. Boil. Chem. 2004, 279, 30338–30348. [Google Scholar] [CrossRef] [Green Version]
- Richter, W.; Menniti, F.S.; Zhang, H.-T.; Conti, M. PDE4 as a target for cognition enhancement. Expert Opin. Ther. Targets 2013, 17, 1011–1027. [Google Scholar] [CrossRef] [Green Version]
- Alberini, C.M. Transcription Factors in Long-Term Memory and Synaptic Plasticity. Physiol. Rev. 2009, 89, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.A.; Kaplan, M.P.; Park, A.; Blanchard, E.J.; Oliveira, A.M.M.; Lombardi, T.L.; Abel, T. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 2005, 12, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweatt, J.D. Toward a Molecular Explanation for Long-Term Potentiation. Learn. Mem. 1999, 6, 399–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, U.; Huang, Y.; Kandel, E. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 1993, 260, 1661–1664. [Google Scholar] [CrossRef] [PubMed]
- Cherry, J.A.; Davis, R.L. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J. Comp. Neurol. 1999, 407, 287–301. [Google Scholar] [CrossRef]
- Johansson, E.M.; Reyes-Irisarri, E.; Mengod, G. Comparison of cAMP-specific phosphodiesterase mRNAs distribution in mouse and rat brain. Neurosci. Lett. 2012, 525, 1–6. [Google Scholar] [CrossRef]
- Reyes-Irisarri, E.; Pérez-Torres, S.; Miró, X.; Martinez, E.; Puigdomènech, P.; Palacios, J.M.; Mengod, G. Differential distribution of PDE4B splice variant mRNAs in rat brain and the effects of systemic administration of LPS in their expression. Synapse 2008, 62, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Frey, J.U. Expression of the specific type IV phosphodiesterase gene PDE4B3 during different phases of long-term potentiation in single hippocampal slices of rats in vitro. Neuroscience 2003, 117, 627–638. [Google Scholar] [CrossRef]
- Bliss, T.V.P.; Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef]
- Winder, D.G.; Mansuy, I.M.; Osman, M.; Moallem, T.M.; Kandel, E.R. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 1998, 92, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.T.; Athos, J.; Figueroa, X.A.; Pineda, V.V.; Schaefer, M.L.; Chavkin, C.C.; Muglia, L.J.; Storm, D.R. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 1999, 23, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Frey, S.; Frey, J. Regulation of the phosphodiesterase PDE4B3-ISOTYPE during long-term potentiation in the area dentata in vivo. Neuroscience 2004, 124, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Frey, J.U.; Morris, R.G.M. Weak before strong: Dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 1998, 37, 545–552. [Google Scholar] [CrossRef]
- Ahmed, T.; Frey, J. Phosphodiesterase 4B (PDE4B) and cAMP-level regulation within different tissue fractions of rat hippocampal slices during long-term potentiation in vitro. Brain Res. 2005, 1041, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Matzel, L.D.; Townsend, D.A.; Grossman, H.; Han, Y.R.; Hale, G.; Zappulla, M.; Light, K.; Kolata, S. Exploration in outbred mice covaries with general learning abilities irrespective of stress reactivity, emotionality, and physical attributes. Neurobiol. Learn. Mem. 2006, 86, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Light, K.R.; Kolata, S.; Hale, G.; Grossman, H.; Matzel, L.D. Up-regulation of exploratory tendencies does not enhance general learning abilities in juvenile or young-adult outbred mice. Neurobiol. Learn. Mem. 2008, 90, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Saab, B.J.; Georgiou, J.; Nath, A.; Lee, F.J.S.; Wang, M.; Michalon, A.; Liu, F.; Mansuy, I.M.; Roder, J.C. NCS-1 in the Dentate Gyrus Promotes Exploration, Synaptic Plasticity, and Rapid Acquisition of Spatial Memory. Neuron 2009, 63, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Rutten, K.; Wallace, T.L.; Works, M.; Prickaerts, J.; Blokland, A.; Novak, T.J.; Santarelli, L.; Misner, D.L. Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B−/−) mice. Neuropharmacology 2011, 61, 138–147. [Google Scholar] [CrossRef]
- LeDoux, J.E. Emotion Circuits in the Brain. Annu. Rev. Neurosci. 2000, 23, 155–184. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Li, X.; Bao, G.; Tao, Y.; Wu, Z.; Xia, P.; Wu, C.; Li, B.; Ma, L. Regulation of amygdalar PKA by β-arrestin-2/phosphodiesterase-4 complex is critical for fear conditioning. Proc. Natl. Acad. Sci. USA 2009, 106, 21918–21923. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-T.; Huang, Y.; Masood, A.; Stolinski, L.R.; Li, Y.; Zhang, L.; Dlaboga, D.; Jin, S.-L.C.; Conti, M.; O’Donnell, J.M. Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology 2008, 33, 1611–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutch, A.; Charney, D.S. A Functional Neuroanatomy of Anxiety and Fear: Implications for the Pathophysiology and Treatment of Anxiety Disorders. Crit. Rev. Neurobiol. 1996, 10, 419–446. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, H. Isoform-Selective Susceptibility of DISC1/Phosphodiesterase-4 Complexes to Dissociation by Elevated Intracellular cAMP Levels. J. Neurosci. Res. 2007, 27, 9513–9524. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, D.; Fordyce, A.; Walker, M.; Clair, D.S.; Porteous, D.J.; Muir, W. Schizophrenia and Affective Disorders—Cosegregation with a Translocation at Chromosome 1q42 That Directly Disrupts Brain-Expressed Genes: Clinical and P300 Findings in a Family. Am. J. Hum. Genet. 2001, 69, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.J.; Weinberger, D.R. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol. Psychiatry 2005, 10, 40–68. [Google Scholar] [CrossRef] [Green Version]
- Eykelenboom, J.E.; Briggs, G.J.; Bradshaw, N.J.; Soares, D.; Ogawa, F.; Christie, S.; Malavasi, E.L.; Makedonopoulou, P.; Mackie, S.; Malloy, M.P.; et al. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins. Hum. Mol. Genet. 2012, 21, 3374–3386. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Cheng, D.; Zhang, C.; Li, Y.; Zhang, Z.; Wang, J.; Shi, Y. Association of PDE4B Polymorphisms with Susceptibility to Schizophrenia: A Meta-Analysis of Case-Control Studies. PLoS ONE 2016, 11, e0147092. [Google Scholar] [CrossRef] [Green Version]
- Camargo, L.M.; Collura, V.; Rain, J.-C.; Mizuguchi, K.; Hermjakob, H.; Kerrien, S.; Bonnert, T.P.; Whiting, P.J.; Brandon, N.J. Disrupted in Schizophrenia 1 Interactome: Evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 2006, 12, 74. [Google Scholar] [CrossRef]
- Wynshaw-Boris, A. Lissencephaly and LIS1: Insights into the molecular mechanisms of neuronal migration and development. Clin. Genet. 2007, 72, 296–304. [Google Scholar] [CrossRef]
- Brandon, N.J.; Handford, E.; Schurov, I.; Rain, J.-C.; Pelling, M.; Duran-Jimeniz, B.; Camargo, L.; Oliver, K.; Beher, D.; Shearman, M.; et al. Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: Implications for schizophrenia and other major neurological disorders. Mol. Cell. Neurosci. 2004, 25, 42–55. [Google Scholar] [CrossRef]
- Higginbotham, H.R.; Gleeson, J.G. The centrosome in neuronal development. Trends Neurosci. 2007, 30, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Chang, J.H.; Ge, S.; Faulkner, R.; Kim, J.Y.; Kitabatake, Y.; Liu, X.-B.; Yang, C.-H.; Jordan, J.D.; Ma, D.K.; et al. Disrupted-In-Schizophrenia 1 Regulates Integration of Newly Generated Neurons in the Adult Brain. Cell 2007, 130, 1146–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, N.J.; Soares, D.C.; Carlyle, B.C.; Ogawa, F.; Davidson-Smith, H.; Christie, S.; Millar, J.K. PKA Phosphorylation of NDE1 Is DISC1/PDE4 Dependent and Modulates Its Interaction with LIS1 and NDEL1. J. Neurosci. 2011, 31, 9043. [Google Scholar] [CrossRef] [PubMed]
- Toyo-Oka, K.; Sasaki, S.; Yano, Y.; Mori, D.; Kobayashi, T.; Toyoshima, Y.Y.; Tokuoka, S.M.; Ishii, S.; Shimizu, T.; Muramatsu, M.; et al. Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Hum. Mol. Genet. 2005, 14, 3113–3128. [Google Scholar] [CrossRef]
- Shen, Y.; Li, N.; Wu, S.; Zhou, Y.; Shan, Y.; Zhang, Q.; Ding, C.; Yuan, Q.; Zhao, F.; Zeng, R.; et al. Nudel Binds Cdc42GAP to Modulate Cdc42 Activity at the Leading Edge of Migrating Cells. Dev. Cell 2008, 14, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Hebbar, S.; Mesngon, M.T.; Guillotte, A.M.; Desai, B.; Ayala, R.; Smith, D.S. Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. J. Cell Boil. 2008, 182, 1063. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, J.S.; Wang, Y.; Estrada, R.C.; Ackerman, L.; Ohara, P.T.; Baraban, S.C. Seizures, enhanced excitation, and increased vesicle number in Lis1 mutant mice. Ann. Neurol. 2009, 66, 644–653. [Google Scholar] [CrossRef]
- Mori, D.; Yamada, M.; Mimori-Kiyosue, Y.; Shirai, Y.; Suzuki, A.; Ohno, S.; Saya, H.; Wynshaw-Boris, A.; Hirotsune, S. An essential role of the aPKC–Aurora A–NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat. Cell Biol. 2009, 11, 1057. [Google Scholar] [CrossRef]
- Siuciak, J.; McCarthy, S.A.; Chapin, D.S.; Martin, A.N.; Harms, J.F.; Schmidt, C.J. Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology 2008, 54, 417–427. [Google Scholar] [CrossRef]
- Siuciak, J.; Chapin, D.S.; McCarthy, S.A.; Martin, A.N. Antipsychotic profile of rolipram: Efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology 2007, 192, 415–424. [Google Scholar] [CrossRef]
- Takahashi, M.; Terwilliger, R.; Lane, C.; Mézes, P.S.; Conti, M.; Duman, R.S. Chronic Antidepressant Administration Increases the Expression of cAMP-Specific Phosphodiesterase 4A and 4B Isoforms. J. Neurosci. 1999, 19, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Wu, P.; Ohleth, K.M.; Egan, R.W.; Billah, M.M. Phosphodiesterase 4B2 Is the Predominant Phosphodiesterase Species and Undergoes Differential Regulation of Gene Expression in Human Monocytes and Neutrophils. Mol. Pharmacol. 1999, 56, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Garcia-Castillo, D.; Aguirre, V.; Golshani, R.; Atkins, C.; Bramlett, H.M.; Dietrich, W.D.; Pearse, D.D. Proinflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury. Glia 2012, 60, 1839–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flora, G.; Joseph, G.; Patel, S.; Singh, A.; Bleicher, D.; Barakat, D.; Louro, J.; Fenton, S.; Garg, M.; Bunge, M.B.; et al. Combining Neurotrophin-Transduced Schwann Cells and Rolipram to Promote Functional Recovery from Subacute Spinal Cord Injury. Cell Transplant. 2013, 22, 2203–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kielian, T. Toll-like receptors in central nervous system glial inflammation and homeostasis. J. Neurosci. Res. 2006, 83, 711–730. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Kaisho, T.; Akira, S. Pleiotropic function of Toll-like receptors. Microbes Infect. 2004, 6, 1388–1394. [Google Scholar] [CrossRef]
- Kopp, E.; Medzhitov, R. Recognition of microbial infection by Toll-like receptors. Curr. Opin. Immunol. 2003, 15, 396–401. [Google Scholar] [CrossRef]
- Marsh, C.B.; Moore, S.A.; Pope, H.A.; Wewers, M.D. IL-1ra suppresses endotoxin-induced IL-1 beta and TNF-alpha release from mononuclear phagocytes. Am. J. Physiol. Cell. Mol. Physiol. 1994, 267, L39–L45. [Google Scholar] [CrossRef]
- Borysiewicz, E.; Fil, D.; Dlaboga, D.; O’Donnell, J.M.; Konat, G.W. Phosphodiesterase 4B2 gene is an effector of Toll-like receptor signaling in astrocytes. Metab. Brain Dis. 2009, 24, 481. [Google Scholar] [CrossRef]
- Gray, M.J.; Poljakovic, M.; Kepka-Lenhart, D.; Morris, S. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPβ. Gene 2005, 353, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Barnette, M.S. Phosphodiesterase 4 (PDE4) inhibitors in asthma and chronic obstructive pulmonary disease (COPD). In Progress in Drug Research; Szmuszkovicz, J., Ed.; Birkhäuser Basel: Basel, Switzerland, 1999; pp. 193–229. [Google Scholar]
- Torphy, T.J. Phosphodiesterase Isozymes. Am. J. Respir. Crit. Care Med. 1998, 157, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Essayan, D.M. Cyclic nucleotide phosphodiesterase (PDE) inhibitors and immunomodulation. Biochem. Pharmacol. 1999, 57, 965–973. [Google Scholar] [CrossRef]
- Jin, S.-L.C.; Lan, L.; Zoudilova, M.; Conti, M. Specific Role of Phosphodiesterase 4B in Lipopolysaccharide-Induced Signaling in Mouse Macrophages. J. Immunol. 2005, 175, 1523. [Google Scholar] [CrossRef] [Green Version]
- Ariga, M.; Neitzert, B.; Nakae, S.; Mottin, G.; Bertrand, C.; Pruniaux, M.P.; Jin, S.-L.C.; Conti, M. Nonredundant Function of Phosphodiesterases 4D and 4B in Neutrophil Recruitment to the Site of Inflammation. J. Immunol. 2004, 173, 7531. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, M.C.; Baillie, G.; Stirling, D.I.; Houslay, M. Remodelling of the PDE4 cAMP phosphodiesterase isoform profile upon monocyte-macrophage differentiation of human U937 cells. Br. J. Pharmacol. 2004, 142, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.-L.C.; Conti, M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses. Proc. Natl. Acad. Sci. USA 2002, 99, 7628–7633. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.; Aguirre, V.; Wai, K.; Felfly, H.; Dietrich, W.D.; Pearse, D.D. The Interplay between Cyclic AMP, MAPK, and NF-kB Pathways in Response to Proinflammatory Signals in Microglia. BioMed Res. Int. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.C.; Li, S.-H.; Hanifin, J.M. Increased Interleukin-4 Production by Atopic Mononuclear Leukocytes Correlates with Increased Cyclic Adenosine Monophosphate—Phosphodiesterase Activity and Is Reversible by Phosphodiesterase Inhibition. J. Investig. Dermatol. 1993, 100, 681–684. [Google Scholar] [CrossRef]
- Krause, D.S.; Deutsch, C. Cyclic AMP directly inhibits IL-2 receptor expression in human T cells: Expression of both p55 and p75 subunits is affected. J. Immunol. 1991, 146, 2285. [Google Scholar]
- Maghazachi, A.A. Tumor Necrosis Factor-α Is Chemokinetic for Lymphokine-Activated Killer Cells: Regulation by Cyclic Adenosine Monophosphate. J. Leukoc. Biol. 1991, 49, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Novak, T.J.; Rothenberg, E.V. cAMP inhibits induction of interleukin 2 but not of interleukin 4 in T cells. Proc. Natl. Acad. Sci. USA 1990, 87, 9353–9357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakar, U.; Lipshutz, D.; Bartus, J.O.; Slivjak, M.J.; Smith, E.F.; Lee, J.C.; Esser, K.M.; Iii, E.F.S. Characterization of cAMP-dependent inhibition of LPS-induced TNFα production by rolipram, a specific phosphodiesterase IV (PDE IV) inhibitor. Int. J. Immunopharmacol. 1994, 16, 805–816. [Google Scholar] [CrossRef]
- Whitnall, L.; McMillan, T.M.; Murray, G.; Teasdale, G.M. Disability in young people and adults after head injury: 5–7 year follow up of a prospective cohort study. J. Neurol. Neurosurg. Psychiatry 2006, 77, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, L.; Cristofori, I.; Weaver, S.; Chau, A.; Portelli, J.N.; Grafman, J. Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol. 2012, 11, 1103–1112. [Google Scholar] [CrossRef]
- Cuthbert, J.P.; Pretz, C.R.; Bushnik, T.; Fraser, R.T.; Hart, T.; Kolakowsky-Hayner, S.A.; Malec, J.F.; O’Neil-Pirozzi, T.M.; Sherer, M. Ten-Year Employment Patterns of Working Age Individuals After Moderate to Severe Traumatic Brain Injury: A National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems Study. Arch. Phys. Med. Rehabil. 2015, 96, 2128–2136. [Google Scholar] [CrossRef]
- Atkins, C.; Cepero, M.L.; Kang, Y.; Liebl, D.J.; Dietrich, W.D. Effects of early rolipram treatment on histopathological outcome after controlled cortical impact injury in mice. Neurosci. Lett. 2013, 532, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Soares, H.; Hicks, R.; Smith, D.; McIntosh, T. Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J. Neurosci. 1995, 15, 8223. [Google Scholar] [CrossRef]
- Naganuma, K.; Omura, A.; Maekawara, N.; Saitoh, M.; Ohkawa, N.; Kubota, T.; Nagumo, H.; Kodama, T.; Takemura, M.; Ohtsuka, Y.; et al. Discovery of selective PDE4B inhibitors. Bioorganic Med. Chem. Lett. 2009, 19, 3174–3176. [Google Scholar] [CrossRef]
- Fox, D.; Burgin, A.B.; Gurney, M.E. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cell. Signal. 2014, 26, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meller, R.; Minami, M.; Cameron, J.A.; Impey, S.; Chen, D.; Lan, J.-Q.; Henshall, D.C.; Simon, R. CREB-Mediated Bcl-2 Protein Expression after Ischemic Preconditioning. J. Cereb. Blood Flow Metab. 2005, 25, 234–246. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, X.-P.; Fan, J.; Liu, Q.; Anwar, K.N.; Frey, R.S.; Malik, A.B. LPS activation of Toll-like receptor 4 signals CD11b/CD18 expression in neutrophils. Am. J. Physiol. Cell. Mol. Physiol. 2005, 288, L655–L662. [Google Scholar] [CrossRef]
- Lynn, W.A.; Raetz, C.R.; Qureshi, N.; Golenbock, D.T. Lipopolysaccharide-induced stimulation of CD11b/CD18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists. J. Immunol. 1991, 147, 3072. [Google Scholar] [PubMed]
- Ghosh, M.; Pearse, D.D. Cyclic amp-specific pdes: A promising therapeutic target for cns repair. Transl. Neurosci. 2010, 1, 101–105. [Google Scholar] [CrossRef]
- Lorenowicz, M.J.; Fernandez-Borja, M.; Hordijk, P.L. cAMP Signaling in Leukocyte Transendothelial Migration. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Oliva, A.A., Jr.; Kang, Y.; Furones, C.; Alonso, O.F.; Bruno, O.; Dietrich, W.D.; Atkins, C. Phosphodiesterase isoform-specific expression induced by traumatic brain injury. J. Neurochem. 2012, 123, 1019–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baye, J. Roflumilast (daliresp): A novel phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. J. Formul. Manag. 2012, 37, 149–161. [Google Scholar]
- Goto, T.; Shiina, A.; Yoshino, T.; Mizukami, K.; Hirahara, K.; Suzuki, O.; Sogawa, Y.; Takahashi, T.; Mikkaichi, T.; Nakao, N.; et al. Identification of the fused bicyclic 4-amino-2-phenylpyrimidine derivatives as novel and potent PDE4 inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 3325–3328. [Google Scholar] [CrossRef]
- Gobejishvili, L.; Barve, S.; Joshi-Barve, S.; McClain, C.J. Enhanced PDE4B expression augments LPS-inducible TNF expression in ethanol-primed monocytes: Relevance to alcoholic liver disease. American journal of physiology. Gastrointest. Liver Physiol. 2008, 295, G718–G724. [Google Scholar] [CrossRef]
- Gobejishvili, L.; Barve, S.; Joshi-Barve, S.; Uriarte, S.; Song, Z.; McClain, C.J. Chronic ethanol-mediated decrease in cAMP primes macrophages to enhanced LPS-inducible NF-κB activity and TNF expression: Relevance to alcoholic liver disease. Am. J. Physiol. Liver Physiol. 2006, 291, G681–G688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, T.-M.; Lee, R.-P.; Lee, C.-J.; Subeq, Y.-M.; Lin, N.-T.; Hsu, B.-G. Heavy Ethanol Intoxication Increases Proinflammatory Cytokines and Aggravates Hemorrhagic Shock-Induced Organ Damage in Rats. Mediat. Inflamm. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; He, J.; Hanes, R.N.; Pluzarev, O.; Hong, J.-S.; Crews, F.T. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J. Neuroinflammation 2008, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Lizarbe, S.; Pascual, M.; Guerri, C. Critical Role of TLR4 Response in the Activation of Microglia Induced by Ethanol. J. Immunol. 2009, 183, 4733. [Google Scholar] [CrossRef] [Green Version]
- Avila, D.V.; Myers, S.A.; Zhang, J.; Kharebava, G.; McClain, C.J.; Kim, H.-Y.; Whittemore, S.R.; Gobejishvili, L.; Barve, S. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation. Neuropharmacology 2017, 125, 376–385. [Google Scholar] [CrossRef]
- Blednov, Y.A.; Benavidez, J.M.; Black, M.; Harris, R.A. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Crews, F.T. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp. Neurol. 2008, 210, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Lu, T.; Chen, A.; Huang, Y.; Hansen, R.; Chandler, L.J.; Zhang, H.-T. Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology 2011, 218, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Raker, V.; Becker, C.; Steinbrink, K. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Front. Immunol. 2016, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Ahmadvand, D.; Su, J.; Hall, A.; Tan, X.; Farhangrazi, Z.S.; Moghimi, S.M. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat. Commun. 2019, 10, 4635. [Google Scholar] [CrossRef] [Green Version]
- Oller-Salvia, B.; Sanchez-Navarro, M.; Giralt, E.; Teixido, M. Blood–brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem. Soc. Rev. 2016, 45, 4690–4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, B.; Pourseif, M.M.; Barar, J.; Rafi, M.A.; Omidi, Y. Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin. Drug Deliv. 2019, 16, 583–605. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibbo, A.J.; Baillie, G.S. Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells 2020, 9, 1254. https://doi.org/10.3390/cells9051254
Tibbo AJ, Baillie GS. Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells. 2020; 9(5):1254. https://doi.org/10.3390/cells9051254
Chicago/Turabian StyleTibbo, Amy J., and George S. Baillie. 2020. "Phosphodiesterase 4B: Master Regulator of Brain Signaling" Cells 9, no. 5: 1254. https://doi.org/10.3390/cells9051254