Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma
Abstract
:1. Introduction
2. Immune Checkpoint Inhibitors
2.1. Background on PD-1/PD-L1 and CTLA-4 Pathways
2.2. Immune Checkpoint Inhibitor Monotherapy in Advanced ccRCC
2.3. Exploration of Novel Immune-Modulating Therapies for Renal Cell Carcinoma
3. Combination Immunotherapies
3.1. Rationale for Combining Immunotherapies
3.2. PD-1/PD-L1 Inhibitors + CTLA-4 Inhibitors
3.3. Checkpoint Inhibitors + VEGF Inhibitors
3.3.1. Avelumab + Axitinib
3.3.2. Pembrolizumab + Axitinib
3.3.3. Nivolumab + Cabozantinib
3.3.4. Pembrolizumab + Lenvatinib
3.4. Ongoing Clinical Trials of Combination Immunotherapies
4. Bispecific Antibodies Targeting T-Cell Costimulatory Receptors
4.1. Background on Bispecific Antibodies
4.2. Bispecific Antibodies in Development for ccRCC
5. CAR T-Cell Therapy
5.1. Background on CAR T-Cell Approach
5.2. CAR-T in Development for ccRCC
6. Other Immune-Based Therapies
6.1. Vaccines
6.2. Cytokines
6.3. Adoptive Cell Transfer
6.4. Oncolytic Viruses
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of renal cell carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef]
- Alzubaidi, A.N.; Sekoulopoulos, S.; Pham, J.; Walter, V.; Fuletra, J.G.; Raman, J.D. Incidence and Distribution of New Renal Cell Carcinoma Cases: 27-Year Trends from a Statewide Cancer Registry. J. Kidney Cancer VHL 2022, 9, 7–12. [Google Scholar] [CrossRef]
- Protzel, C.; Maruschke, M.; Hakenberg, O.W. Epidemiology, aetiology, and pathogenesis of renal cell carcinoma. Eur. Urol. Suppl. 2012, 11, 52–59. [Google Scholar] [CrossRef]
- El-Zaatari, Z.M.; Truong, L.D. Renal cell carcinoma in end-stage renal disease: A review and update. Biomedicines 2022, 10, 657. [Google Scholar] [CrossRef]
- Muglia, V.F.; Prando, A. Renal cell carcinoma: Histological classification and correlation with imaging findings. Radiol. Bras. 2015, 48, 166–174. [Google Scholar] [CrossRef]
- Khoshdel Rad, N.; Vahidyeganeh, M.; Mohammadi, M.; Shpichka, A.; Timashev, P.; Hossein-Khannazer, N.; Vosough, M. Non-clear cell renal cell carcinoma: Molecular pathogenesis, innovative modeling, and targeted therapeutic approaches. Int. J. Transl. Med. 2022, 2, 555–573. [Google Scholar] [CrossRef]
- Ross, J.A.; Msaouel, P.; Tannir, N.M. Management of Non-Clear Cell Renal Cell Carcinoma. Ren. Cancer Contemp. Manag. 2020, 307–323. [Google Scholar]
- Clark, P.E. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int. 2009, 76, 939–945. [Google Scholar] [CrossRef]
- Baldewijns, M.M.; van Vlodrop, I.J.; Vermeulen, P.B.; Soetekouw, P.M.; van Engeland, M.; de Bruïne, A.P. VHL and HIF signalling in renal cell carcinogenesis. J. Pathol. 2010, 221, 125–138. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Prim. 2017, 3, 17009. [Google Scholar] [CrossRef]
- He, Y.; Ma, X.; Chen, K.; Liu, F.; Cai, S.; Han-Zhang, H.; Hou, T.; Xiang, J.; Peng, J. Perioperative circulating tumor DNA in colorectal liver metastases: Concordance with metastatic tissue and predictive value for tumor burden and prognosis. Cancer Manag. Res. 2020, 12, 1621–1630. [Google Scholar] [CrossRef]
- Sánchez-Gastaldo, A.; Kempf, E.; Del Alba, A.G.; Duran, I. Systemic treatment of renal cell cancer: A comprehensive review. Cancer Treat. Rev. 2017, 60, 77–89. [Google Scholar] [CrossRef]
- Dutcher, J.P.; Flippot, R.; Fallah, J.; Escudier, B. On the shoulders of giants: The evolution of renal cell carcinoma treatment—Cytokines, targeted therapy, and immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 418–435. [Google Scholar] [CrossRef]
- Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Lab. Med. 2017, 1, 69–75. [Google Scholar] [CrossRef]
- Pelengaris, S.; Khan, M. The Molecular Biology of Cancer: A Bridge from Bench to Bedside; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Porta, C.; Figlin, R.A. Phosphatidylinositol-3-kinase/Akt signaling pathway and kidney cancer, and the therapeutic potential of phosphatidylinositol-3-kinase/Akt inhibitors. J. Urol. 2009, 182, 2569–2577. [Google Scholar] [CrossRef]
- Morgensztern, D.; McLeod, H.L. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anti-Cancer Drugs 2005, 16, 797–803. [Google Scholar] [CrossRef]
- Bhojani, N.; Jeldres, C.; Patard, J.-J.; Perrotte, P.; Suardi, N.; Hutterer, G.; Patenaude, F.; Oudard, S.; Karakiewicz, P.I. Toxicities associated with the administration of sorafenib, sunitinib, and temsirolimus and their management in patients with metastatic renal cell carcinoma. Eur. Urol. 2008, 53, 917–930. [Google Scholar] [CrossRef]
- Wilky, B.A. Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol. Rev. 2019, 290, 6–23. [Google Scholar] [CrossRef]
- Xu, W.; Atkins, M.B.; McDermott, D.F. Checkpoint inhibitor immunotherapy in kidney cancer. Nat. Rev. Urol. 2020, 17, 137–150. [Google Scholar] [CrossRef]
- Ballesteros, P.Á.; Chamorro, J.; Román-Gil, M.S.; Pozas, J.; Gómez Dos Santos, V.; Granados, Á.R.; Grande, E.; Alonso-Gordoa, T.; Molina-Cerrillo, J. Molecular mechanisms of resistance to immunotherapy and antiangiogenic treatments in clear cell renal cell carcinoma. Cancers 2021, 13, 5981. [Google Scholar] [CrossRef]
- Kim, T.J.; Lee, Y.H.; Koo, K.C. Current and future perspectives on CAR-T cell therapy for renal cell carcinoma: A comprehensive review. Investig. Clin. Urol. 2022, 63, 486. [Google Scholar] [CrossRef]
- Kim, C.-G.; Sang, Y.-B.; Lee, J.-H.; Chon, H.-J. Combining cancer vaccines with immunotherapy: Establishing a new immunological approach. Int. J. Mol. Sci. 2021, 22, 8035. [Google Scholar] [CrossRef]
- Hah, Y.-S.; Koo, K.-C. Immunology and immunotherapeutic approaches for advanced renal cell carcinoma: A comprehensive review. Int. J. Mol. Sci. 2021, 22, 4452. [Google Scholar] [CrossRef]
- Lipson, E.J.; Forde, P.M.; Hammers, H.-J.; Emens, L.A.; Taube, J.M.; Topalian, S.L. Antagonists of PD-1 and PD-L1 in cancer treatment. In Seminars in Oncology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 587–600. [Google Scholar]
- McKay, R.R.; Bossé, D.; Xie, W.; Wankowicz, S.A.; Flaifel, A.; Brandao, R.; Lalani, A.-K.A.; Martini, D.J.; Wei, X.X.; Braun, D.A. The clinical activity of PD-1/PD-L1 inhibitors in metastatic non–clear cell renal cell carcinoma. Cancer Immunol. Res. 2018, 6, 758–765. [Google Scholar] [CrossRef]
- Fessas, P.; Lee, H.; Ikemizu, S.; Janowitz, T. A molecular and preclinical comparison of the PD-1–targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. In Seminars in Oncology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 136–140. [Google Scholar]
- Naimi, A.; Mohammed, R.N.; Raji, A.; Chupradit, S.; Yumashev, A.V.; Suksatan, W.; Shalaby, M.N.; Thangavelu, L.; Kamrava, S.; Shomali, N. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun. Signal. 2022, 20, 44. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, R.; Song, W.; Sun, J.; Liu, D.; Li, Z. PD-1, PD-L1 (B7-H1) and tumor-site immune modulation therapy: The historical perspective. J. Hematol. Oncol. 2017, 10, 34. [Google Scholar] [CrossRef]
- Yang, J.; Hu, L. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: From antibodies to small molecules. Med. Res. Rev. 2019, 39, 265–301. [Google Scholar] [CrossRef]
- Kudo, M. Scientific rationale for combination immunotherapy of hepatocellular carcinoma with anti-PD-1/PD-L1 and anti-CTLA-4 antibodies. Liver Cancer 2019, 8, 413–426. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef]
- McDermott, D.F.; Lee, J.-L.; Bjarnason, G.A.; Larkin, J.M.; Gafanov, R.A.; Kochenderfer, M.D.; Jensen, N.V.; Donskov, F.; Malik, J.; Poprach, A. Open-label, single-arm phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced clear cell renal cell carcinoma. J. Clin. Oncol. 2021, 39, 1020–1028. [Google Scholar] [CrossRef]
- McDermott, D.; Lee, J.; Szczylik, C.; Donskov, F.; Malik, J.; Alekseev, B. Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma: Results from cohort A of KEYNOTE-427. J. Clin. Oncol. 2018, 36 (Suppl. S15), 4500. [Google Scholar] [CrossRef]
- Atkins, M.B.; Jegede, O.A.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Stein, M.; Sosman, J.A.; Alter, R.; Plimack, E.R.; Ornstein, M. Phase II study of nivolumab and salvage nivolumab/ipilimumab in treatment-naive patients with advanced clear cell renal cell carcinoma (HCRN GU16-260-Cohort A). J. Clin. Oncol. 2022, 40, 2913–2923. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Plimack, E.R.; Procopio, G.; McDermott, D.F. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 2020, 126, 4156–4167. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.-H.; Hajek, J.; Symeonides, S.N.; Lee, J.-L.; Sarwar, N. Pembrolizumab versus Placebo as Post-Nephrectomy Adjuvant Therapy for Patients with Renal Cell Carcinoma: Randomized, Double-Blind, Phase III KEYNOTE-564 Study; American Society of Clinical Oncology: Alexandria, VA, USA, 2021. [Google Scholar]
- Friedman, C.F.; Proverbs-Singh, T.A.; Postow, M.A. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: A review. JAMA Oncol. 2016, 2, 1346–1353. [Google Scholar] [CrossRef]
- Villadolid, J.; Amin, A. Immune checkpoint inhibitors in clinical practice: Update on management of immune-related toxicities. Transl. Lung Cancer Res. 2015, 4, 560–575. [Google Scholar]
- Astaras, C.; de Micheli, R.; Moura, B.; Hundsberger, T.; Hottinger, A.F. Neurological adverse events associated with immune checkpoint inhibitors: Diagnosis and management. Curr. Neurol. Neurosci. Rep. 2018, 18, 3. [Google Scholar] [CrossRef]
- Baraibar, I.; Melero, I.; Ponz-Sarvise, M.; Castanon, E. Safety and tolerability of immune checkpoint inhibitors (PD-1 and PD-L1) in cancer. Drug Saf. 2019, 42, 281–294. [Google Scholar] [CrossRef]
- Lee, C.H.; Jung, S.J.; Seo, W.I.; Chung, J.I.; Lee, D.S.; Jeong, D.H.; Jeon, Y.; Choi, I. Coexpression of LAG-3 and PD-L1 in tumor infiltrating immune cells predicts worse outcome in renal cell carcinoma. Int J Immunopathol Pharmacol. 2022, 36, 03946320221125588. [Google Scholar] [CrossRef]
- Zelba, H.; Bedke, J.; Hennenlotter, J.; Mostböck, S.; Zettl, M.; Zichner, T.; Chandran, A.; Stenzl, A.; Rammensee, H.-G.; Gouttefangeas, C. PD-1 and LAG-3 dominate checkpoint receptor–mediated t-cell inhibition in renal cell carcinoma. Cancer Immunol. Res. 2019, 7, 1891–1899. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Jinnouchi, N.; Tuyukubo, T.; Ikarashi, D.; Matsuura, T.; Maekawa, S.; Kato, Y.; Kanehira, M.; Takata, R.; Ishida, K. TIM3 expression on tumor cells predicts response to anti-PD-1 therapy for renal cancer. Transl. Oncol. 2021, 14, 100918. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Xu, Y.-F.; Wu, Z.-J.; Dong, Q.; Li, M.-Y.; Olson, J.C.; Rabinowitz, Y.M.; Wang, L.-H.; Sun, Y. Tim-3 expression represents dysfunctional tumor infiltrating T cells in renal cell carcinoma. World J. Urol. 2016, 34, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Yu, C.; Bi, J.; Liu, Q.; Wang, Q. TIGIT may Serve as a Potential Target for the Immunotherapy of Renal Cell Carcinoma. Adv. Biol. 2023. [Google Scholar] [CrossRef]
- Noel, S.; Lee, K.; Gharaie, S.; Kurzhagen, J.T.; Pierorazio, P.M.; Arend, L.J.; Kuchroo, V.K.; Cahan, P.; Rabb, H. Immune checkpoint molecule TIGIT regulates kidney T cell functions and contributes to AKI. J. Am. Soc. Nephrol. 2023, 34, 755–771. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, H.; Zhou, L.; Liu, Z.; Fu, H.; Zhu, Y.; Xu, L.; Xu, J. CCL2/CCR2 axis is associated with postoperative survival and recurrence of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2016, 7, 51525. [Google Scholar] [CrossRef]
- Kadomoto, S.; Izumi, K.; Mizokami, A. Roles of CCL2-CCR2 axis in the tumor microenvironment. Int. J. Mol. Sci. 2021, 22, 8530. [Google Scholar] [CrossRef]
- Bessho, H.; Wong, B.; Huang, D.; Tan, J.; Ong, C.K.; Iwamura, M.; Hart, S.; Dangl, M.; Thomas, M.; Teh, B.T. Effect of Ang-2-VEGF-A bispecific antibody in renal cell carcinoma. Cancer Investig. 2015, 33, 378–386. [Google Scholar] [CrossRef]
- Siu, L.; Brody, J.; Gupta, S.; Marabelle, A.; Jimeno, A.; Munster, P.; Grilley-Olson, J.; Rook, A.H.; Hollebecque, A.; Wong, R.K. Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J. Immunother. Cancer 2020, 8, e001095. [Google Scholar] [CrossRef]
- Diab, A.; Tannir, N.M.; Bentebibel, S.-E.; Hwu, P.; Papadimitrakopoulou, V.; Haymaker, C.; Kluger, H.M.; Gettinger, S.N.; Sznol, M.; Tykodi, S.S. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: Phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 2020, 10, 1158–1173. [Google Scholar] [CrossRef]
- Jian, Y.; Yang, K.; Sun, X.; Zhao, J.; Huang, K.; Aldanakh, A.; Xu, Z.; Wu, H.; Xu, Q.; Zhang, L. Current advance of immune evasion mechanisms and emerging immunotherapies in renal cell carcinoma. Front. Immunol. 2021, 12, 639636. [Google Scholar] [CrossRef]
- Au, L.; Hatipoglu, E.; de Massy, M.R.; Litchfield, K.; Beattie, G.; Rowan, A.; Schnidrig, D.; Thompson, R.; Byrne, F.; Horswell, S. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell 2021, 39, 1497–1518.e11. [Google Scholar] [CrossRef]
- Jonasch, E.; Atkins, M.B.; Chowdhury, S.; Mainwaring, P. Combination of anti-angiogenics and checkpoint inhibitors for renal cell carcinoma: Is the whole greater than the sum of its parts? Cancers 2022, 14, 644. [Google Scholar] [CrossRef]
- Navani, V.; Heng, D.Y. Treatment selection in first-line metastatic renal cell carcinoma—The contemporary treatment paradigm in the age of combination therapy: A review. JAMA Oncol. 2022, 8, 292–299. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Motzer, R.J.; McDermott, D.F.; Escudier, B.; Burotto, M.; Choueiri, T.K.; Hammers, H.J.; Barthélémy, P.; Plimack, E.R.; Porta, C.; George, S. Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma. Cancer 2022, 128, 2085–2097. [Google Scholar] [CrossRef]
- Hammers, H.J.; Plimack, E.R.; Infante, J.R.; Rini, B.I.; McDermott, D.F.; Lewis, L.D.; Voss, M.H.; Sharma, P.; Pal, S.K.; Razak, A.R.A. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: The CheckMate 016 study. J. Clin. Oncol. 2017, 35, 3851–3858. [Google Scholar] [CrossRef]
- Michaelis, J.; Grabbert, M.; Sigle, A.; Yilmaz, M.; Schlager, D.; Gratzke, C.; Miernik, A.; Schoeb, D.S. Tyrosine Kinase Inhibitors in the Treatment of Metastasised Renal Cell Carcinoma—Future or the Past? Cancers 2022, 14, 3777. [Google Scholar] [CrossRef]
- Oh, H.; Takagi, H.; Otani, A.; Koyama, S.; Kemmochi, S.; Uemura, A.; Honda, Y. Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): A mechanism contributing to VEGF-induced angiogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 383–388. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Haanen, J.; Larkin, J.; Choueiri, T.; Albiges, L.; Rini, B.; Atkins, M.; Schmidinger, M.; Penkov, K.; Michelon, E.; Wang, J. Extended follow-up from JAVELIN Renal 101: Subgroup analysis of avelumab plus axitinib versus sunitinib by the International Metastatic Renal Cell Carcinoma Database Consortium risk group in patients with advanced renal cell carcinoma. ESMO Open 2023, 8, 101210. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Waddell, T.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B. Pembrolizumab Plus Axitinib versus Sunitinib as First-Line Therapy for Advanced Clear Cell Renal Cell Carcinoma: 5-Year Analysis of KEYNOTE-426; American Society of Clinical Oncology: Alexandria, VA, USA, 2023. [Google Scholar]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Waddell, T.; Gafanov, R.; Pouliot, F.; Nosov, D.; Melichar, B.; Soulieres, D.; Borchiellini, D. Pembrolizumab (Pembro) Plus Axitinib (Axi) versus Sunitinib as First-Line Therapy for Advanced Clear Cell Renal Cell Carcinoma (ccRCC): Results from 42-Month Follow-Up of KEYNOTE-426; Wolters Kluwer Health: Philadelphia, PA, USA, 2021. [Google Scholar]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Burotto, M.; Powles, T.; Escudier, B.; Apolo, A.B.; Bourlon, M.T.; Shah, A.Y.; Suárez, C.; Porta, C.; Barrios, C.H.; Richardet, M. Nivolumab Plus Cabozantinib vs. Sunitinib for First-Line Treatment of Advanced Renal Cell Carcinoma (aRCC): 3-Year Follow-Up from the Phase 3 CheckMate 9ER Trial; American Society of Clinical Oncology: Alexandria, VA, USA, 2023. [Google Scholar]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Eto, M.; Motzer, R.; De Giorgi, U.; Buchler, T.; Basappa, N.S.; Méndez-Vidal, M.J.; Tjulandin, S.; Park, S.H.; Melichar, B. Lenvatinib plus pembrolizumab versus sunitinib as first-line treatment of patients with advanced renal cell carcinoma (CLEAR): Extended follow-up from the phase 3, randomised, open-label study. Lancet Oncol. 2023, 24, 228–238. [Google Scholar] [CrossRef]
- Lee, C.-H.; Shah, A.Y.; Rasco, D.; Rao, A.; Taylor, M.H.; Di Simone, C.; Hsieh, J.J.; Pinto, A.; Shaffer, D.R.; Sarrio, R.G. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): A phase 1b/2 study. Lancet Oncol. 2021, 22, 946–958. [Google Scholar] [CrossRef]
- Makker, V.; Aghajanian, C.; Cohn, A.L.; Romeo, M.; Bratos, R.; Brose, M.S.; Messing, M.; Dutta, L.; Dutcus, C.E.; Huang, J. A phase ib/II study of lenvatinib and pembrolizumab in advanced endometrial carcinoma (study 111/KEYNOTE-146): Long-term efficacy and safety update. J. Clin. Oncol. 2023, 41, 974–979. [Google Scholar] [CrossRef]
- Amaria, R.N.; Reuben, A.; Cooper, Z.A.; Wargo, J.A. Update on use of aldesleukin for treatment of high-risk metastatic melanoma. ImmunoTargets Ther. 2015, 4, 79–89. [Google Scholar]
- Patnaik, A.; Morgensztern, D.; Mantia, C.; Tannir, N.M.; Harshman, L.C.; Hill, J.; White, K.; Chung, J.-K.; Bowers, B.; Sciaranghella, G. Results of a phase 1 study of SRF388, a first-in-human, first-in-class, high-affinity anti-IL-27 antibody in advanced solid tumors. J. Clin. Oncol. 2021, 39, 2551. [Google Scholar] [CrossRef]
- Elsässer, D.; Stadick, H.; Stark, S.; Van de Winkel, J.; Gramatzki, M.; Schrott, K.; Valerius, T.; Schafhauser, W. Preclinical studies combining bispecific antibodies with cytokine-stimulated effector cells for immunotherapy of renal cell carcinoma. Anticancer Res. 1999, 19, 1525–1528. [Google Scholar]
- Dahlén, E.; Veitonmäki, N.; Norlén, P. Bispecific antibodies in cancer immunotherapy. Ther. Adv. Vaccines Immunother. 2018, 6, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.M.; Chatal, J.-F.; Barbet, J.; Boerman, O.; Sharkey, R.M. Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther. 2007, 2, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Luiten, R.; Coney, L.; Fleuren, G.; Warnaar, S.; Litvinov, S. Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma. Br. J. Cancer 1996, 74, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Oosterwijk-Wakka, J.C.; Boerman, O.C.; Mulders, P.F.; Oosterwijk, E. Application of monoclonal antibody G250 recognizing carbonic anhydrase IX in renal cell carcinoma. Int. J. Mol. Sci. 2013, 14, 11402–11423. [Google Scholar] [CrossRef] [PubMed]
- Van Schaijk, F.G.; Oosterwijk, E.; Molkenboer-Kuenen, J.D.; Soede, A.C.; McBride, B.J.; Goldenberg, D.M.; Oyen, W.J.; Corstens, F.H.; Boerman, O.C. Pretargeting with bispecific anti-renal cell carcinoma x anti-DTPA (In) antibody in 3 RCC models. J. Nucl. Med. 2005, 46, 495–501. [Google Scholar] [PubMed]
- Dovedi, S.J.; Elder, M.J.; Yang, C.; Sitnikova, S.I.; Irving, L.; Hansen, A.; Hair, J.; Jones, D.C.; Hasani, S.; Wang, B. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov. 2021, 11, 1100–1117. [Google Scholar] [CrossRef] [PubMed]
- Albiges, L.; Medina Rodriguez, L.; Kim, S.-W.; Im, S.-A.; Carcereny, E.; Rha, S.Y.; Tran, B.; Oliveira, J.; Maroto-Rey, P.; Su, W.-C. Safety and Clinical Activity of MEDI5752, a PD-1/CTLA-4 Bispecific Checkpoint Inhibitor, as Monotherapy in Patients (pts) with Advanced Renal Cell Carcinoma (RCC): Preliminary Results from an FTIH Trial; American Society of Clinical Oncology: Alexandria, VA, USA, 2022. [Google Scholar]
- Bupathi, M.; Wang, J.S.; Hu-Lieskovan, S.; Piha-Paul, S.A.; Chmielowski, B.; Garmezy, B.; Najjar, Y.G.; Stein, M.N.; Yao, L.; Kanodia, J.; et al. 764 A phase 1, first-in-human (FIH), open-label, dose-finding and expansion study of XmAb808, a B7H3 x CD28 bispecific antibody, in combination with pembrolizumab in patients with advanced solid tumors. J. ImmunoTherapy Cancer 2023, 11 (Suppl. S1), A859. [Google Scholar]
- Zhang, C.; Liu, J.; Zhong, J.F.; Zhang, X. Engineering car-t cells. Biomark. Res. 2017, 5, 22. [Google Scholar] [CrossRef]
- Boyiadzis, M.M.; Dhodapkar, M.V.; Brentjens, R.J.; Kochenderfer, J.N.; Neelapu, S.S.; Maus, M.V.; Porter, D.L.; Maloney, D.G.; Grupp, S.A.; Mackall, C.L. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: Clinical perspective and significance. J. Immunother. Cancer 2018, 6, 137. [Google Scholar] [CrossRef]
- Suarez, E.R.; Chang, D.-K.; Sun, J.; Sui, J.; Freeman, G.J.; Signoretti, S.; Zhu, Q.; Marasco, W.A. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 2016, 7, 34341. [Google Scholar] [CrossRef] [PubMed]
- Valiullina, A.K.; Zmievskaya, E.A.; Ganeeva, I.A.; Zhuravleva, M.N.; Garanina, E.E.; Rizvanov, A.A.; Petukhov, A.V.; Bulatov, E.R. Evaluation of CAR-T Cells’ Cytotoxicity against Modified Solid Tumor Cell Lines. Biomedicines 2023, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Panowski, S.H.; Srinivasan, S.; Tan, N.; Tacheva-Grigorova, S.K.; Smith, B.; Mak, Y.S.; Ning, H.; Villanueva, J.; Wijewarnasuriya, D.; Lang, S. Preclinical development and evaluation of allogeneic CAR T-cells targeting CD70 for the treatment of renal cell carcinoma. Cancer Res. 2022, 82, 2610–2624. [Google Scholar] [CrossRef] [PubMed]
- Lyou, Y.; Dorff, T.B. Chimeric Antigen Receptor (CAR) T-cell Treatment in Renal Cell Carcinoma: Current clinical trials and future directions. Kidney Cancer 2022, 6, 159–168. [Google Scholar] [CrossRef]
- Srour, S.; Kotecha, R.; Curti, B.; Chahoud, J.; Drakaki, A.; Tang, L.; Goyal, L.; Prashad, S.; Szenes, V.; Norwood, K. Abstract CT011: A phase 1 multicenter study (TRAVERSE) evaluating the safety and efficacy of ALLO-316 following conditioning regimen in pts with advanced or metastatic clear cell renal cell carcinoma (ccRCC). Cancer Res. 2023, 83 (Suppl. S8), CT011. [Google Scholar] [CrossRef]
- Kim, I.-H.; Lee, H.J. The frontline immunotherapy-based treatment of advanced clear cell renal cell carcinoma: Current evidence and clinical perspective. Biomedicines 2022, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric antigen receptors modified T-cells for cancer therapy. J. Natl. Cancer Inst. 2016, 108, djv439. [Google Scholar] [CrossRef]
- Rasmussen, N.R. Elucidating the Role of the Receptor Tyrosine Kinase Ror2 within the Wnt Pathway and Its Contributions to Renal Cell Carcinoma Tumorigenesis; The University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2013. [Google Scholar]
- Lee, W.-P.; Liao, Y.; Robinson, D.; Kung, H.-J.; Liu, E.T.; Hung, M.-C. Axl-gas6 interaction counteracts E1A-mediated cell growth suppression and proapoptotic activity. Mol. Cell. Biol. 1999, 19, 8075–8082. [Google Scholar] [CrossRef]
- Albinger, N.; Hartmann, J.; Ullrich, E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 2021, 28, 513–527. [Google Scholar] [CrossRef]
- Morimoto, Y.; Yamashita, N.; Daimon, T.; Hirose, H.; Yamano, S.; Haratake, N.; Ishikawa, S.; Bhattacharya, A.; Fushimi, A.; Ahmad, R. MUC1-C is a master regulator of MICA/B NKG2D ligand and exosome secretion in human cancer cells. J. Immunother. Cancer 2023, 11, e006238. [Google Scholar] [CrossRef]
- Xu, Y.; Miller, C.P.; Warren, E.H.; Tykodi, S.S. Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Hum. Vaccines Immunother. 2021, 17, 1882–1896. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhou, W.; Pi, R.; Zhao, X.; Wang, W. Genetically modified cancer vaccines: Current status and future prospects. Med. Res. Rev. 2022, 42, 1492–1517. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.; Hunter, T.B.; Soliman, H.; Thompson, P.; Dunn, M.; Smilee, R.; Farmelo, M.J.; Noyes, D.R.; Mahany, J.J.; Lee, J.-H. Phase II trial of B7-1 (CD-86) transduced, cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma. J. Immunother. 2008, 31, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Hu, A.; Figlin, R.A. A new age for vaccine therapy in renal cell carcinoma. Cancer J. 2013, 19, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Van Poppel, H.; Joniau, S.; Van Gool, S.W. Vaccine therapy in patients with renal cell carcinoma. Eur. Urol. 2009, 55, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Vuky, J.; Motzer, R.J. Cytokine therapy in renal cell cancer. In Urologic Oncology: Seminars and Original Investigations; Elsevier: Amsterdam, The Netherlands, 2000; pp. 249–257. [Google Scholar]
- Johannsen, M.; Brinkmann, O.A.; Bergmann, L.; Heinzer, H.; Steiner, T.; Ringsdorf, M.; Römer, A.; Roigas, J. The role of cytokine therapy in metastatic renal cell cancer. Eur. Urol. Suppl. 2007, 6, 658–664. [Google Scholar] [CrossRef]
- Fyfe, G.; Fisher, R.I.; Rosenberg, S.A.; Sznol, M.; Parkinson, D.R.; Louie, A.C. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 1995, 13, 688–696. [Google Scholar] [CrossRef]
- Erbe, A.K.; Wang, W.; Kim, K.M.; Carmichael, L.; Gallendberger, M.; Hess, D.; Mendonca, E.A.; Song, Y.; Hank, J.A.; Chen, S.-C. Associations of Fc gamma receptor (FcgR2a, FcgR3a and FcgR2c) genotype with outcome in metastatic renal cell carcinoma (mRCC) patients receiving high dose interleukin 2 (HD-IL2). J. ImmunoTherapy Cancer 2015, 3, P300. [Google Scholar] [CrossRef]
- Papaetis, G.S.; Karapanagiotou, L.M.; Pandha, H.; Syrigos, K.N. Targeted therapy for advanced renal cell cancer: Cytokines and beyond. Curr. Pharm. Des. 2008, 14, 2229–2251. [Google Scholar] [CrossRef]
- Kirkali, Z.; Tüzel, E. Systemic therapy of kidney cancer: Tyrosine kinase inhibitors, antiangiogenesis or IL-2? Future Oncol. 2009, 5, 871–888. [Google Scholar] [CrossRef]
- Strizova, Z.; Bartunkova, J.; Smrz, D. The challenges of adoptive cell transfer in the treatment of human renal cell carcinoma. Cancer Immunol. Immunother. 2019, 68, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lin, H.; Zhao, L.; Song, Y.; Gao, Q. Combination of sorafenib and cytokine-induced killer cells in metastatic renal cell carcinoma: A potential regimen. Immunotherapy 2017, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.-X.; Mei, G.-H.; Zhao, F.-L.; Li, B.-T.; Tang, Y.-Y.; Zhang, B.; Xu, X.-J.; Chen, L.-J. Retrospective analysis on the efficacy of sunitinib/sorafenib in combination with dendritic cells-cytokine-induced killer in metastasis renal cell carcinoma after radical nephrectomy. J. Cancer Res. Ther. 2018, 14 (Suppl. S2), S427–S432. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Pan, Q.-Z.; Weng, D.-S.; Xie, C.-M.; Zhao, J.-J.; Chen, M.-S.; Peng, R.-Q.; Li, D.-D.; Wang, Y.; Tang, Y. Safety and activity of PD-1 blockade-activated DC-CIK cells in patients with advanced solid tumors. Oncoimmunology 2018, 7, e1417721. [Google Scholar] [CrossRef] [PubMed]
- Daher, M.; Rezvani, K. Outlook for new CAR-based therapies with a focus on CAR NK cells: What lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov. 2021, 11, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Hadiloo, K.; Tahmasebi, S.; Esmaeilzadeh, A. CAR-NKT cell therapy: A new promising paradigm of cancer immunotherapy. Cancer Cell Int. 2023, 23, 86. [Google Scholar] [CrossRef]
- Hu, Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci. Rep. 2020, 10, 2815. [Google Scholar] [CrossRef]
- Strizova, Z.; Taborska, P.; Stakheev, D.; Partlová, S.; Havlova, K.; Vesely, S.; Bartunkova, J.; Smrz, D. NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. In Urologic Oncology: Seminars and Original Investigations; Elsevier: Amsterdam, The Netherlands, 2019; pp. 503–509. [Google Scholar]
- Liang, Z.; Nong, F.; Zhao, J.; Wei, D.; Tang, Q.; Song, J.; Meng, L. Heterogeneity in NK cell subpopulations may be involved in kidney cancer metastasis. J. Immunol. Res. 2022, 2022, 6378567. [Google Scholar] [CrossRef]
- Lawson, K.A.; Morris, D.G. Oncolytic virotherapy for renal cell carcinoma: A novel treatment paradigm? Expert Opin. Biol. Ther. 2012, 12, 891–903. [Google Scholar] [CrossRef]
- Helmy, K.Y.; Patel, S.A.; Nahas, G.R.; Rameshwar, P. Cancer immunotherapy: Accomplishments to date and future promise. Ther. Deliv. 2013, 4, 1307–1320. [Google Scholar] [CrossRef]
- Vähä-Koskela, M.J.; Heikkilä, J.E.; Hinkkanen, A.E. Oncolytic viruses in cancer therapy. Cancer Lett. 2007, 254, 178–216. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol. Ther.-Oncolytics 2019, 15, 234–247. [Google Scholar] [CrossRef]
- Evgin, L.; Kottke, T.; Tonne, J.; Thompson, J.; Huff, A.L.; van Vloten, J.; Moore, M.; Michael, J.; Driscoll, C.; Pulido, J. Oncolytic virus–mediated expansion of dual-specific CAR T-cells improves efficacy against solid tumors in mice. Sci. Transl. Med. 2022, 14, eabn2231. [Google Scholar] [CrossRef]
- Roos, F.C.; Roberts, A.M.; Hwang, I.I.; Moriyama, E.H.; Evans, A.J.; Sybingco, S.; Watson, I.R.; Carneiro, L.A.; Gedye, C.; Girardin, S.E. Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. EMBO Mol. Med. 2010, 2, 275–288. [Google Scholar] [CrossRef]
- Choong, O.K.; Jakobsson, R.; Bergdahl, A.G.; Brunet, S.; Kärmander, A.; Waldenström, J.; Arvidsson, Y.; Altiparmak, G.; Nilsson, J.A.; Karlsson, J. SARS-CoV-2 replicates and displays oncolytic properties in clear cell and papillary renal cell carcinoma. PLoS ONE 2023, 18, e0279578. [Google Scholar] [CrossRef]
- Lu, Y.; Madu, C.O. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin. Drug Deliv. 2010, 7, 19–35. [Google Scholar] [CrossRef]
- Chiu, M.; Armstrong, E.J.L.; Jennings, V.; Foo, S.; Crespo-Rodriguez, E.; Bozhanova, G.; Patin, E.C.; McLaughlin, M.; Mansfield, D.; Baker, G. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert Opin. Biol. Ther. 2020, 20, 635–652. [Google Scholar] [CrossRef]
- LaRocca, C.J.; Warner, S.G. Oncolytic viruses and checkpoint inhibitors: Combination therapy in clinical trials. Clin. Transl. Med. 2018, 7, 35. [Google Scholar] [CrossRef]
NCT Number | Trial Name | Phase | Therapy Setting | Patients | Description | mOS (Months) | mPFS (Months) | ORR (%) |
---|---|---|---|---|---|---|---|---|
NCT02853344 | KEYNOTE-427 | 2 | 1st line | 110 | pembrolizumab in locally advanced or metastatic ccRCC | 40.7 (95% CI, 31.1–52.6) | 7.1 (95% CI, 5.6–11.0) | 36 (95% CI, 27–46) |
NCT03117309 | HCRN: GU16-260 | 2 | 1st line | 123 | nivolumab and salvage nivolumab + ipilimumab in advanced ccRCC | NR | 8.3 (95% CI, 5.5–10.9) | 34 (95% CI, 26–43) |
NCT01668784 | CheckMate 025 | 3 | 2nd line | 410 vs. 411 | nivolumab vs. everolimus in pretreated ccRCC | 25.8 (95% CI, 22.2–29.8) vs. 19.7 (95% CI, 17.6–23.1); HR = 0.73 (95% CI, 0.62–0.85), p < 0.0001 | 4.2 (95% CI, 3.7–5.4) vs. 4.5 (95% CI, 3.7–5.5) HR = 0.84 (95% CI, 0.72–0.99), p = 0.0331 | 23 (95% CI, 19–27) vs. 4 (95% CI, 2–7) |
NCT02420821 | KEYNOTE-564 | 3 | Adjuvant | 496 vs. 498 | pembrolizumab vs. placebo in ccRCC post nephrectomy | NR | NR | NR |
NCT Number | Trial Name | Phase | Therapy Setting | Patients | Description | mOS (Months) | mPFS (Months) | ORR (%) |
---|---|---|---|---|---|---|---|---|
NCT02231749 | CheckMate 214 | 3 | 1st line | 425 vs. 422 | nivolumab + ipilimumab vs. sunitinib | 47.0 (95% CI, 35.4–57.4) vs. 26.6 (95% CI, 22.1–33.5); HR = 0.68 (95% CI, 0.58–0.81), p < 0.0001 | 11.6 (95% CI, 8.7–15.5) vs. 8.4 (95% CI, 7.0–10.8) HR = 0.82 (99.1% CI, 0.64–1.05), p = 0.03 | 42 (95% CI, 37–47) vs. 27 (95% CI, 22–31) |
NCT01472081 | CheckMate 016 | 1 | 2nd line | 47 vs. 47 | 3 mg/kg nivolumab + 1 mg/kg ipilimumab vs. 1 mg/kg nivolumab + 3 mg/kg ipilimumab | NR (95% CI, 26.7-NE) vs. 32.6 (95% CI, 26.0-NE) | 7.7 (95% CI, 3.7–14.3) vs. 9.4 (95% CI, 5.6–18.6) | 40 (95% CI, 26–56) vs. 40 (95% CI, 26–56) |
NCT02684006 | Javelin Renal 101 | 3 | 1st line | 442 vs. 444 | avelumab + axitinib vs. sunitinib | NE (95% CI, 30-NE) vs. NE (95% CI, 27.4-NE) HR = 0.80 (95% CI, 0.62–1.03), p = 0.0392 | 13.3 (95% CI, 11.1–15.3) vs. 8.0 (95% CI, 6.7–9.8) HR = 0.69 (95% CI, 0.57–0.83), p < 0.0001 | 53 (95% CI, 48–57) vs. 27 (95% CI, 23–32) |
NCT02853331 | KEYNOTE-426 | 3 | 1st line | 432 vs. 429 | pembrolizumab + axitinib vs. sunitinib | NR vs. 35.7 (95% CI, 33.3-NE) HR = 0.53 (95% CI, 0.38–0.74), p < 0.0001 | 15.4 (95% CI, 12.7–18.9) vs. 11.1 (95% CI, 9.1–12.5) HR = 0.71 (99.8% CI, 0.60–0.84), p < 0.0001 | 59 (95% CI, 55–64) vs. 36 (95% CI, 31–40) |
NCT03141177 | CheckMate 9ER | 3 | 1st line | 323 vs. 328 | carbozantinib + nivolumab vs. sunitinib | NR vs. NR HR = 0.60 (98.9% CI, 0.40–0.89), p = 0.001 | 16.6 (95% CI, 12.5–24.9) vs. 8.3 (95% CI, 7.0–9.7) HR = 0.51 (95% CI, 0.41–0.64), p < 0.0001 | 56 (95% CI, 50–61) vs. 27 (95% CI, 22–32) |
NCT02811861 | Clear | 3 | 1st line | 355 vs. 357 | lenvatinib + pembrolizumab vs. sunitinib | NR vs. NR HR = 0.66 (95% CI, 0.49–0.88), p = 0.005 | 23.9 (95% CI, 20.8–27.7) vs. 9.2 (95% CI, 6.0–11.0) HR = 0.39 (95% CI, 0.32–0.49), p < 0.001 | 71 (95% CI, 66–76) vs. 36 (95% CI, 48–59) |
NCT02420821 | Immotion 151 | 3 | 1st line | 454 vs. 461 | atezolizumab + bevacizumab vs. sunitinib | 36.1 (95% CI, 31.5–42.3) vs. 35.3 (95% CI, 28.6–42.1) HR = 0.0.91 (95% CI, 0.76–1.08), p = 0.27 | 9.6 (95% CI, 8.3–11.5) vs. 8.3 (95% CI, 7.0–9.7) HR = 0.88 (95% CI, 0.74–1.04), p = 0.12 | 37 (95% CI, 32–41) vs. 33 (95% CI, 29–38) |
NCT02501096 | KEYNOTE-146 | 1b/2 | 2nd line | 145 | lenvatinib + pembrolizumab | 32.2 (95% CI, 29.8–55.8) | 14.1 (95% CI, 11.6–18.4) | 63 (95% CI, 55–71) |
NCT Number | Trial Name | Phase | Estimated Patients | Description | Sponsor |
---|---|---|---|---|---|
NCT05269381 | PNeoVCA | 1 | 36 | pembrolizumab + personalized neoantigen peptide vaccine | Mayo Clinic |
NCT04388852 | NA | 1 | 80 | ipilimumab + valemetostat | M.D. Anderson Cancer Center |
NCT04572451 | NA | 1 | 50 | nivolumab + anti IL-8 + SBRT | University of Pittsburgh |
NCT03260504 | NA | 1 | 15 | pembrolizumab + aldesleukin | University of Washington |
NCT04374877 | KEYNOTE-C16 | 1 | 220 | pembrolizumab + anti IL-27 | Surface Oncology |
NCT05327686 | SAMURAI | 2 | 240 | nivolumab or pembrolizumab + axitinib + cabozantinib + SBRT | NRG Oncology |
NCT04393350 | NA | 2 | 22 | pembrolizumab + perioperative lenvatinib | Emory University |
NCT05319015 | NA | 2 | 30 | pembrolizumab + neoadjuvant lenvatinib | UTSW |
NCT02811861 | KEYNOTE-581 | 3 | 1069 | levatinib + everolimus or pembrolizumab | Eisai Inc. |
NCT05361720 | OPTIC | 2 | 54 | ipilimumab + nivolumab + cabozantinib | Vanderbilt-Ingram Cancer Center |
NCT03288532 | RAMPART | 3 | 1750 | durvalumab + tremelimumab | University College, London |
NCT05148546 | NESCIO | 2 | 69 | neoadjuvant nivolumab+ ipilimumab + relatlimab | The Netherlands Cancer Institute |
NCT04322955 | Cyto-KIK | 2 | 48 | nivolumab + cabozantinib + cytoreductive nephrectomy | Columbia University |
NCT05188118 | NA | 1 | 20 | ipilimumab + nivolumab + cabozantinib | Icahn School of Medicine at Mount Sinai |
NCT05363631 | NA | 1/2 | 55 | pembrolizumab + axitinib + selenomethionine | University of Iowa |
NCT04981509 | NA | 2 | 65 | bevacizumab + erlotinib + atezolizumab | National Cancer Institute |
NCT04090710 | CYTOSHRINK | 2 | 78 | ipilimumab + nivolumab + SBRT | Ontario Clinical Oncology Group |
NCT05411081 | PAPMET2 | 2 | 200 | atezolizumab + cabozantinib | National Cancer Institute |
NCT Number | Trial Name | Phase | Estimated Patients | Description | Sponsor |
---|---|---|---|---|---|
NCT04696731 | TRAVERSE | 1 | 120 | CD-70 CAR-T (ALLO-316) in advanced or metastatic ccRCC | Allogene Therapeutics |
NCT03393936 | NA | 1/2 | 66 | AXL CAR-T (CCT301-38) or ROR2 CAR-T (CCT301-59) in recurrent or refractory stage IV RCC | Shanghai PerHum Therapeutics Co., Ltd. |
NCT04438083 | COBALT-RCC | 1 | 107 | CD70 CAR-T (CTX130) in relapsed, or refractory ccRCC | CRISPR Therapeutics AG |
NCT03638206 | NA | 1/2 | 73 | multi-target CAR-T/TCR-T in various malignancies, including c-MET CAR-T in ccRCC | Shenzhen BinDeBio Ltd. |
NCT05239143 | NA | 1 | 100 | MUC1-C CAR-T in advanced or metastatic solid tumors, including ccRCC | Poseida Therapeutics, Inc. |
NCT05420519 | PBC036 | 1 | 24 | CD70 CAR-T in advanced or metastatic RCC | Chongqing Precision Biotech Co., Ltd. |
NCT04969354 | NA | 1 | 20 | CAIX CAR-T in advanced RCC | The Affiliated Hospital of Xuzhou Medical University |
NCT05518253 | PBC038 | 1 | 36 | CD70 CAR-T in CD70-positive advanced or metastatic solid tumors, including ccRCC | Zhejiang University |
NCT05468190 | PBC041 | 1 | 48 | CD70 CAR-T in CD70-positive advanced or metastatic solid tumors, including ccRCC | Chongqing Precision Biotech Co., Ltd. |
NCT05420545 | PBC037 | 1 | 36 | CD70 CAR-T in CD70-positive advanced or metastatic solid tumors, including ccRCC | Chongqing Precision Biotech Co., Ltd. |
NCT05795595 | NA | 1/2 | 250 | CD-70 CAR-T (CTX131) in relapsed or refractory solid tumors, including ccRCC | CRISPR Therapeutics AG |
NCT02830724 | NA | 1/2 | 124 | CD70 CAR-T in CD70-positive advanced or metastatic solid tumors, including ccRCC | National Cancer Institute |
NCT Number | Trial Name | Phase | Estimated Patients | Description | Sponsor |
---|---|---|---|---|---|
NCT00031564 | MCC-12207 | 2 | 49 | B7-1 gene-modified autologous tumor cell vaccine + IL-2 in stage IV RCC | H. Lee Moffitt Cancer Center and Research Institute |
NCT00458536 | NA | 1/2 | 38 | dendritic cell tumor fusions + GM-CSF in stage IV RCC | Beth Israel Deaconess Medical Center |
NCT00004880 | UCLA-9703025 | 1 | 14 | dendritic cell vaccine + nephrectomy in advanced RCC | Jonsson Comprehensive Cancer Center |
NCT00085436 | DMS-0238 | 2 | 18 | dendritic cell vaccine + IL-2 + IFNα-2a in metastatic RCC | Dartmouth-Hitchcock Medical Center |
NCT02950766 | NA | 1 | 19 | NeoVax (personalized NeoAntigen cancer vaccine) + ipilimumab in resectable stage III or IV ccRCC | Dana-Farber Cancer Institute |
NCT01265368 | MGN1601-CT1 | 1/2 | 19 | genetically modified allogeneic tumor cells vaccine + DNA-based immunomodulator in advanced RCC | Mologen AG |
NCT05127824 | NA | 2 | 42 | TBVA-dendritic cell vaccine + cabozantinib in non-metastatic ccRCC | University of Pittsburgh |
NCT05641545 | IVAC-RCC-001 | 1 | 10 | personalized neoantigen vaccine + nivolumab + ipilimumab in advanced or metastatic RCC | SLK Kliniken Heilbronn GmbH |
NCT05269381 | PNeoVCA | 1 | 36 | personalized neoantigen peptide-based vaccine + pembrolizumab advanced solid tumors, including RCC | Mayo Clinic |
NCT05329532 | ModiFY | 1/2 | 144 | Modi-1/Modi-1v vaccine as monotherapy or + pembrolizumab in advanced TNBC, SCCHN, HGSOC, or RCC. | Scancell Ltd. |
NCT02432963 | NA | 1 | 11 | p53MVA vaccine + pembrolizumab in solid tumors failed prior therapy | City of Hope Medical Center |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Collier, K.A.; Wang, P.; Li, Z.; Monk, P.; Mortazavi, A.; Hu, Z.; Spakowicz, D.; Zheng, L.; Yang, Y. Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma. Cells 2024, 13, 34. https://doi.org/10.3390/cells13010034
Meng L, Collier KA, Wang P, Li Z, Monk P, Mortazavi A, Hu Z, Spakowicz D, Zheng L, Yang Y. Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma. Cells. 2024; 13(1):34. https://doi.org/10.3390/cells13010034
Chicago/Turabian StyleMeng, Lingbin, Katharine A. Collier, Peng Wang, Zihai Li, Paul Monk, Amir Mortazavi, Zhiwei Hu, Daniel Spakowicz, Linghua Zheng, and Yuanquan Yang. 2024. "Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma" Cells 13, no. 1: 34. https://doi.org/10.3390/cells13010034