Influence of Pine and Alder Woodchips Storage Method on the Chemical Composition and Sugar Yield in Liquid Biofuel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Biomass
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Conclusions
- The wood storage method plays a significant role in enzymatic hydrolysis efficiency, which has been statistically confirmed;
- The pine biomass has a lower yield of enzymatic hydrolysis using Dyadic enzymes than alder biomass;
- Higher yields of enzymatic hydrolysis were obtained for wood biomass from both species being stored on an open pile;
- The enzymatic hydrolysis yield of cellulose from wood from both species gave comparable values;
- The enzymatic hydrolysis yield of holocellulose from pine wood gave lower values than holocellulose obtained from alder biomass.
- The low enzymatic hydrolysis yield of alder and pine wood results in the need for pre-treatment to enhance the efficiency of the whole bioethanol producing process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, J.; Sperling, D. Tracking U.S. biofuel innovation through patents. Energy Policy 2016, 98, 97–107. [Google Scholar] [CrossRef]
- Szadkowski, J. The Yield of Model Hydrolysis and Fermentation in the Technology of Bioethanol Production from Poplar Wood (Populus sp.) Wydajność Procesów Hydrolizy i Fermentacji w Technologii Wytwarzania Bioetanolu z Drewna Topoli (Populus sp.). Przem. Chem. 2017, 1, 48–50. [Google Scholar] [CrossRef]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Gardner, B.; Tyner, W. Explorations in Biofuels Economics, Policy, and History: Introduction to the Special Issue. J. Agric. Food Ind. Organ. 2007, 5, 1210. [Google Scholar] [CrossRef]
- Harun, R.; Danquah, M.K. Influence of Acid Pre-Treatment on Microalgal Biomass for Bioethanol Production. Process Biochem. 2011, 46, 304–309. [Google Scholar] [CrossRef]
- Kalinci, Y.; Hepbasli, A.; Dincer, I. Biomass-Based Hydrogen Production: A Review and Analysis. Int. J. Hydrogen Energy 2009, 34, 8799–8817. [Google Scholar] [CrossRef]
- Chen, M.-H.; Kaur, P.; Dien, B.; Below, F.; Vincent, M.L.; Singh, V. Use of Tropical Maize for Bioethanol Production. World J. Microbiol. Biotechnol. 2013, 29, 1509–1515. [Google Scholar] [CrossRef]
- Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Krutul, D.; Antczak, A.; Kłosińska, T.; Radomski, A.; Drożdżek, M.; Zawadzki, J. The chemical composition of poplar wood in relation to the species and the age of trees. Ann. WULS For. Wood Technol. 2019, 107, 131–138. [Google Scholar] [CrossRef]
- Sztyber, J. Przechowywanie zrębków drzewnych w stosach. Czysta Energ. 2005, 41, 29–31. [Google Scholar]
- Pecenka, R.; Lenz, H.; Idler, C. Influence of the chip format on the development of mass loss, moisture content and chemical composition of poplar chips during storage and drying in open-air piles. Biomass-Bioenergy 2018, 116, 140–150. [Google Scholar] [CrossRef]
- Pari, L.; Brambilla, M.; Bisaglia, C.; Del Giudice, A.; Croce, S.; Salerno, M.; Gallucci, F. Poplar wood chip storage: Effect of particle size and breathable covering on drying dynamics and biofuel quality. Biomass Bioenergy 2015, 81, 282–287. [Google Scholar] [CrossRef]
- Simpson, W.T. Dry Kiln Operator’s Manual Agriculture Handbook (United States. Dept. of Agriculture); 188. Madison, Wis.: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, United States Government Printing: Washington, DC, USA, 1991. [Google Scholar]
- Jirjis, R.; Theander, O. The effect of seasonal storage on the chemical composition of forest residue chips. Scand. J. For. Res. 1990, 5, 437–448. [Google Scholar] [CrossRef]
- Casal, M.; Gil, M.; Pevida, C.; Rubiera, F.; Pis, J. Influence of storage time on the quality and combustion behaviour of pine woodchips. Energy 2010, 35, 3066–3071. [Google Scholar] [CrossRef]
- Hosseini Koupaie, E.; Dahadha, S.; Bazyar Lakeh, A.A.; Azizi, A.; Elbeshbishy, E. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production—A review. J. Environ. Manag. 2019, 233, 774–784. [Google Scholar] [CrossRef]
- Baker, P.; Charlton, A.; Hale, M. Fungal pre-treatment of forestry biomass with a focus on biorefining: A comparison of biomass degradation and enzyme activities by wood rot fungi across three tree species. Biomass Bioenergy 2017, 107, 20–28. [Google Scholar] [CrossRef]
- Kránitz, K.; Sonderegger, W.; Bues, C.-T.; Niemz, P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016, 50, 7–22. [Google Scholar] [CrossRef]
- van Kuijk, S.J.; Sonnenberg, A.S.; Baars, J.J.; Hendriks, W.H.; del Río, J.C.; Rencoret, J.; Gutiérrez, A.; De Ruijter, N.; Cone, J.W. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Biomass-Bioenergy 2017, 105, 381–391. [Google Scholar] [CrossRef]
- Akin, D.E. Plant Cell Wall Aromatics: Influence on Degradation of Biomass. Biofuels Bioprod. Biorefining 2008, 2, 288–303. [Google Scholar] [CrossRef]
- Kardaś, D.; Kluska, J.; Klein, M.; Kazimierski, P.; Heda, Ł. Modelowe Kompleksy Agroenergetyczne: Teoretyczne i Eksperymentalne Aspekty Pirolizy Drewna i Odpadów; Wydawnictwo UWM: Olsztyn, Poland, 2014; ISBN 9788372998750. [Google Scholar]
- Weatherwax, R.C. Collapse of Cell-Wall Pores during Drying of Cellulose. J. Colloid Interface Sci. 1977, 62, 432–446. [Google Scholar] [CrossRef]
- Anerud, E.; Kirgstin, S.; Routa, J.; Brännström, H.; Arshadi, M.; Helmeste, C.; Bergström, D.; Egnell, G. Dry Matter Losses during Biomass Storage Measures to Minimize Feedstock Degradation; IEA Bioenergy: Paris, France, 2019. [Google Scholar]
- Ramnath, L.; Sithole, B.; Govinden, R. The Effects of Wood Storage on the Chemical Composition and Indigenous Microflora of Eucalyptus species Used in the Pulping Industry. BioResources 2018, 13, 86–103. [Google Scholar] [CrossRef]
- Akus-Szylberg, F.; Antczak, A.; Zawadzki, J. Effects of soaking aqueous ammonia pretreatment on chemical composition and enzymatic hydrolysis of corn stover. Ann. WULS For. Wood Technol. 2021, 115, 29–36. [Google Scholar] [CrossRef]
- Akus-Szylberg, F.; Antczak, A.; Zawadzkij, J. Effects of Soaking Aqueous Ammonia Pretreatment on Selected Properties and Enzymatic Hydrolysis of Poplar (Populus trichocarpa) Wood. Bioresources 2021, 16, 5618–5627. [Google Scholar] [CrossRef]
- Kot, A.; Kamińska-Dwórznicka, A.; Antczak, A.; Jakubczyk, E.; Matwijczuk, A. Effect of ι-carrageenan and its acidic and enzymatic hydrolysates on ice crystal structure changes in model sucrose solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 1–12. [Google Scholar] [CrossRef]
- Antczak, A.; Szadkowski, J.; Szadkowska, D.; Zawadzki, J. Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood. Wood Sci. Technol. 2022, 56, 87–109. [Google Scholar] [CrossRef]
- Antczak, A.; Radomski, A.; Zawadzki, J. Benzene Substitution in Wood Analysis. Ann. Warsaw Agric. Univ. SGGW For. Wood Technol. 2006, 58, 15–19. [Google Scholar]
- Kürschner, K.; Hoffer, A. Ein Neues Verfahren Zur Bestimmung Der Cellulose in Hölzern Und Zellstoffen. Technol. Chem. Pap. Zellstoff. 1929, 26, 125–129. [Google Scholar]
- Wise, L.E.; Murphy, M.; Adieco, A.A. A Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and Studies on the Hemicelluloses. Pap. Trade J. 1946, 122, 35–42. [Google Scholar]
- Sano, K.; Uchida, H.; Wakabayashi, S. A new process for acetic acid production by direct oxidation of ethylene. Catal. Surv. Jpn. 1999, 3, 55–60. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. NREL/TP-510-42618 Analytical Procedure—Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2012, 17. [Google Scholar]
- Auriga, R.; Auriga, A.; Borysiuk, P.; Wilkowski, J.; Fornalczyk, O.; Ochmian, I. Lignocellulosic Biomass from Grapevines as Raw Material for Particleboard Production. Polymers 2022, 14, 2483. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, R.C. The chemical composition of wood. In The Chemistry of Solid Wood. Advences in Chemistry Series 207; Rowell, R.M., Ed.; American Chemical Society: Washington, DC, USA, 1984. [Google Scholar]
- Master, T.; Varela, E.; Tien, M. Genetics and Biotechnology; Kück, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-642-07667-1. [Google Scholar]
- Pandey, K.; Pitman, A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Bari, E.; Mohebby, B.; Naji, H.R.; Oladi, R.; Yilgor, N.; Nazarnezhad, N.; Ohno, K.M.; Nicholas, D.D. Monitoring the Cell Wall Characteristics of Degraded Beech Wood by White-Rot Fungi: Anatomical, Chemical, and Photochemical Study. Maderas Cienc. y Tecnol. 2018, 20, 35–56. [Google Scholar] [CrossRef]
- Maurya, D.P.; Singla, A.; Negi, S. An Overview of Key Pretreatment Processes for Biological Conversion of Lignocellulosic Biomass to Bioethanol. 3 Biotech 2015, 5, 597–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewalt, V.J.H.; Glasser, W.G.; Beauchemin, K.A. Lignin Impact on Fiber Degradation. 3. Reversal of Inhibition of Enzymatic Hydrolysis by Chemical Modification of Lignin and by Additives. J. Agric. Food Chem. 1997, 45, 1823–1828. [Google Scholar] [CrossRef]
- Mansfield, S.D.; Mooney, C.; Saddler, J.N. Substrate and Enzyme Characteristics That Limit Cellulose Hydrolysis. Biotechnol. Prog. 1999, 15, 804–816. [Google Scholar] [CrossRef]
- Yoshida, M.; Liu, Y.; Uchida, S.; Kawarada, K.; Ukagami, Y.; Ichinose, H.; Kaneko, S.; Fukuda, K. Effects of Cellulose Crystallinity, Hemicellulose, and Lignin on the Enzymatic Hydrolysis of Miscanthus Sinensis to Monosaccharides. Biosci. Biotechnol. Biochem. 2008, 72, 805–810. [Google Scholar] [CrossRef]
- Drożdżek, M.; Zawadzki, J.; Zielenkiewicz, T.; Kłosińska, T.; Gawron, J.; Gołofit, T.; Borysiak, S. The Influence of Method of Cellulose Isolation from Wood on the Degree and Index of Crystallinity. Wood Res.-Slovak. 2015, 60, 255–262. [Google Scholar]
- Álvarez, C.; Reyes-Sosa, F.M.; Díez, B. Enzymatic Hydrolysis of Biomass from Wood. Microb. Biotechnol. 2016, 9, 149–156. [Google Scholar] [CrossRef]
- Aksenov, A.S.; Tyshkunova, I.V.; Poshina, D.N.; Guryanova, A.A.; Chukhchin, D.G.; Sinelnikov, I.G.; Terentyev, K.Y.; Skorik, Y.A.; Novozhilov, E.V.; Synitsyn, A.P. Biocatalysis of Industrial Kraft Pulps: Similarities and Differences between Hardwood and Softwood Pulps in Hydrolysis by Enzyme Complex of Penicillium Verruculosum. Catalysts 2020, 10, 536. [Google Scholar] [CrossRef]
- Van Dyk, J.S.; Pletschke, B.I. A Review of Lignocellulose Bioconversion Using Enzymatic Hydrolysis and Synergistic Cooperation between Enzymes-Factors Affecting Enzymes, Conversion and Synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Mishra, O.P.; Gangwar, A.; Chakrabarti, S.K.; Varadhan, R. Impact of Wood Storage on Pulp and Paper Making Properties. IPPTA Q. J. Indian Pulp Pap. Tech. Assoc. 2011, 23, 161–164. [Google Scholar]
- Anerud, E.; Larsson, G.; Eliasson, L. Storage of Wood Chips: Effect of Chip Size on Storage Properties. Croat. J. For. Eng. 2020, 41, 277–286. [Google Scholar] [CrossRef]
- Silvério, F.O.; Barbosa, L.C.A.; Maltha, C.R.A.; Fidêncio, P.H.; Cruz, M.P.; Veloso, D.P.; Milanez, A.F. Effect of Storage Time on the Composition and Content of Wood Extractives in Eucalyptus Cultivated in Brazil. Bioresour. Technol. 2008, 99, 4878–4886. [Google Scholar] [CrossRef]
- Jones, B.W.; Venditti, R.; Park, S.; Jameel, H.; Koo, B. Enhancement in Enzymatic Hydrolysis by Mechanical Refining for Pretreated Hardwood Lignocellulosics. Bioresour. Technol. 2013, 147, 353–360. [Google Scholar] [CrossRef]
- Mou, H.-Y.; Orblin, E.; Kruus, K.; Fardim, P. Topochemical Pretreatment of Wood Biomass to Enhance Enzymatic Hydrolysis of Polysaccharides to Sugars. Bioresour. Technol. 2013, 142, 540–545. [Google Scholar] [CrossRef]
- Cara, C.; Ruiz, E.; Ballesteros, I.; Negro, M.J.; Castro, E. Enhanced Enzymatic Hydrolysis of Olive Tree Wood by Steam Explosion and Alkaline Peroxide Delignification. Process Biochem. 2006, 41, 423–429. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
Component | Pine | Alder | ||||
---|---|---|---|---|---|---|
Literature Data * | Open Pile (A) | Cover Pile (B) | Literature Data * | Open Pile (A) | Cover Pile (B) | |
Cellulose (wt% ± SD ***) | 44–54 | 47.7 ± 0.4 | 47.3 ± 0.3 | 48 | 46.2 ± 1.1 | 49.8 ± 0.1 |
Holocellulose (wt% ± SD) | 63–71 | 84.8 ± 1,6 | 88.0 ± 0.5 | 73–86 | 70.1 ± 1.8 | 71.9 ± 1.9 |
Hemicelluloses **(wt% ± SD) | 9–27 | 37.1 ± 1.3 | 40.7 ± 0.2 | 25–38 | 24.4 ± 2.8 | 22.1 ± 0.7 |
Lignin (wt% ± SD)) | 21–33 | 34.4 ± 0.9 | 39.1 ± 0.6 | 22–24 | 37.1 ± 0.2 | 35.9 ± 1.9 |
Factors | Hydrolysis of | |||||
---|---|---|---|---|---|---|
Wood | Holocelulose | Celullose | ||||
p | Pc | p | Pc | p | Pc | |
Wood spieces (WS) | 0.0000 | 23.48 | 0.0000 | 39.62 | 0.0000 | 12.83 |
Type of storage (TS) | 0.0001 | 3.51 | 0.0000 | 5.72 | 0.0000 | 6.66 |
Time of hydrolise (TH) | 0.0000 | 63.15 | 0.0000 | 47.06 | 0.0000 | 68.24 |
WS × TS | 0.0447 | 0.70 | 0.0082 | 0.72 | 0.0000 | 5.16 |
WS × TH | 0.0013 | 2.80 | 0.0000 | 3.93 | 0.0842 | 0.97 |
TS × TH | 0.2707 | 0.43 | 0.0645 | 0.53 | 0.1191 | 0.82 |
WS × TS × TH | 0.0046 | 2.14 | 0.1645 | 0.34 | 0.0669 | 1.07 |
Error | 3.77 | 2.07 | 4.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szadkowska, D.; Auriga, R.; Lesiak, A.; Szadkowski, J.; Marchwicka, M. Influence of Pine and Alder Woodchips Storage Method on the Chemical Composition and Sugar Yield in Liquid Biofuel Production. Polymers 2022, 14, 3495. https://doi.org/10.3390/polym14173495
Szadkowska D, Auriga R, Lesiak A, Szadkowski J, Marchwicka M. Influence of Pine and Alder Woodchips Storage Method on the Chemical Composition and Sugar Yield in Liquid Biofuel Production. Polymers. 2022; 14(17):3495. https://doi.org/10.3390/polym14173495
Chicago/Turabian StyleSzadkowska, Dominika, Radosław Auriga, Anna Lesiak, Jan Szadkowski, and Monika Marchwicka. 2022. "Influence of Pine and Alder Woodchips Storage Method on the Chemical Composition and Sugar Yield in Liquid Biofuel Production" Polymers 14, no. 17: 3495. https://doi.org/10.3390/polym14173495