The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PIL/PANI Composite Particles
2.3. Preparation of ER Fluids
2.4. Characterization
2.5. Rheological Measurements
2.6. Dielectric Spectroscopy Measurements
3. Results and Discussion
3.1. Morphology and Structure of PIL/PANI Composite Particles
3.2. Electrorheological Properties
3.3. Dielectric Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Sun, J.; Zeng, X.; Sun, R.; Xu, J.B.; Wong, C.P. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity. Small 2018, 14, e1704044. [Google Scholar] [CrossRef] [PubMed]
- Idris, F.M.; Hashim, M.; Abbas, Z.; Ismail, I.; Nazlan, R.; Ibrahim, I.R. Recent Developments of Smart Electromagnetic Absorbers Based Polymer-Composites at Gigahertz Frequencies. J. Magn. Magn. Mater. 2016, 405, 197–208. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of Electro-Active Shape-Memory Polymer Composite. Compos. Sci. Technol. 2009, 69, 2064–2068. [Google Scholar] [CrossRef]
- Thevenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic Responsive Polymer Composite Materials. Chem. Soc. Rev. 2013, 42, 7099–7116. [Google Scholar] [CrossRef] [Green Version]
- Jochum, F.D.; Theato, P. Temperature- and Light-Responsive Smart Polymer Materials. Chem. Soc. Rev. 2013, 42, 7468–7483. [Google Scholar] [CrossRef]
- Okulov, I.V.; Weissmuller, J.; Markmann, J. Dealloying-Based Interpenetrating-Phase Nanocomposites Matching the Elastic Behavior of Human Bone. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Qin, F.; Brosseau, C. A Review and Analysis of Microwave Absorption in Polymer Composites Filled with Carbonaceous Particles. J. Appl. Phys. 2012, 111, 4. [Google Scholar] [CrossRef]
- Yancey, P.J. Method of Manufacturing a Polymer or Polymer/Composite Polishing Pad. U.S. Patent 6428586, 6 August 2002. [Google Scholar]
- Park, S.J.; Cho, M.S.; Lim, S.T.; Choi, H.J.; Jhon, M.S. Electrorheology of Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Nanocomposites. Macromol. Rapid Commun. 2005, 26, 1563–1566. [Google Scholar] [CrossRef]
- Filipcsei, G.; Csetneki, I.; Szilágyi, A.; Zrínyi, M. Magnetic Field-Responsive Smart Polymer Composites. In Oligomers-Polymer Composites-Molecular Imprinting; Springer: Berlin/Heidelberg, Germany, 2007; pp. 137–189. [Google Scholar]
- Halsey, T.C. Electrorheological Fluids. Science 1992, 258, 761–766. [Google Scholar] [CrossRef] [Green Version]
- Winslow, W.M. Induced Fibration of Suspensions. J. Appl. Phys. 1949, 20, 1137–1140. [Google Scholar] [CrossRef]
- Hao, T. Electrorheological Fluids. Adv. Mater. 2001, 13, 1847–1857. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Choi, S.B.; Park, Y.G. An Analytical Approach to Optimally Design of Electrorheological Fluid Damper for Vehicle Suspension System. Meccanica 2012, 47, 1633–1647. [Google Scholar] [CrossRef]
- Xia, M.; Nie, J.; Zhang, Z.; Lu, X.; Wang, Z.L. Suppressing Self-Discharge of Supercapacitors via Electrorheological Effect of Liquid Crystals. Nano Energy 2018, 47, 43–50. [Google Scholar] [CrossRef]
- Zatopa, A.; Walker, S.; Menguc, Y. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots. Soft Robot. 2018, 5, 258–271. [Google Scholar] [CrossRef]
- Huo, X.; Yossifon, G. Tunable Electrorheological Fluid Microfluidic Rectifier: Irreversibility of Viscous Flow Due to Spatial Asymmetry Induced Memory Effects. Phys. Rev. Lett. 2019, 123, 194502. [Google Scholar] [CrossRef] [Green Version]
- Bloodworth, R.; Wendt, E. Materials for ER Fluids. Int. J. Mod. Phys. B 1996, 10, 2951–2964. [Google Scholar] [CrossRef]
- Weiss, K.D.; Carlson, J.D.; Coulter, J.P. Material Aspects of Electrorheological Systems. J. Intell. Mater. Syst. Struct. 1993, 4, 13–34. [Google Scholar] [CrossRef]
- Zhao, X.P.; Yin, J.B. Preparation and Electrorheological Characteristics of Rare-Earth-Doped TiO2 Suspensions. Chem. Mater. 2002, 14, 2258–2263. [Google Scholar] [CrossRef]
- Tian, Y.; Meng, Y.; Wen, S. Electrorheology of a Zeolite/Silicone Oil Suspension under DC Fields. J. Appl. Phys. 2001, 90, 493–496. [Google Scholar] [CrossRef]
- Liu, Y.D.; Choi, H.J. Electrorheological Fluids: Smart Soft Matter and Characteristics. Soft Matter 2012, 8, 11961–11978. [Google Scholar] [CrossRef]
- Hao, T. Electrorheological Suspensions. Adv. Colloid Interfac. 2002, 97, 1–35. [Google Scholar] [CrossRef]
- Krztoń-Maziopa, A.; Ciszewska, M.; Płocharski, J. Electrorheological Fluids Based on Polymer Electrolytes. Electrochim. Acta 2005, 50, 3838–3842. [Google Scholar] [CrossRef]
- Yin, J.; Wang, X.; Chang, R.; Zhao, X. Polyaniline Decorated Graphene Sheet Suspension with Enhanced Electrorheology. Soft Matter 2012, 8, 294–297. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, X. Electrorheological Properties of a Polyaniline–Montmorillonite Clay Nanocomposite Suspension. J. Mater. Chem. 2002, 12, 2603–2605. [Google Scholar] [CrossRef]
- Dong, Y.; Yin, J.; Zhao, X. Microwave-Synthesized Poly(ionic liquid) Particles: A New Material with High Electrorheological Activity. J. Mater. Chem. A 2014, 2, 9812–9819. [Google Scholar] [CrossRef]
- Dong, Y.; Yin, J.; Yuan, J.; Zhao, X. Microwave-Assisted Synthesis and High-Performance Anhydrous Electrorheological Characteristic of Monodisperse Poly(ionic liquid) Particles with Different Size of Cation/Anion Parts. Polymer 2016, 97, 408–417. [Google Scholar] [CrossRef]
- Chen, P.; Cheng, Q.; Wang, L.-M.; Liu, Y.D.; Choi, H.J. Fabrication of Dual-Coated Graphene Oxide Nanosheets by Polypyrrole and Poly(ionic liquid) and Their Enhanced Electrorheological Responses. J. Ind. Eng. Chem. 2019, 69, 106–115. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Zheng, C.; Lei, Q.; Dong, Y.; Zhao, X.; Yin, J. Pickering Emulsion Polymerization of Poly(ionic liquid)s Encapsulated Nano-SiO2 Composite Particles with Enhanced Electro-Responsive Characteristic. Polymer 2018, 146, 109–119. [Google Scholar] [CrossRef]
- Ikazaki, F.; Kawai, A.; Uchida, K.; Kawakami, T.; Edamura, K.; Sakurai, K.; Anzai, H.; Asako, Y. Mechanisms of Electrorheology: The Effect of the Dielectric Property. J. Phys. D Appl. Phys. 1998, 31, 336–347. [Google Scholar] [CrossRef]
- Kawai, A.; Ide, Y.; Inoue, A.; Ikazaki, F. Electrorheology of Miscible Blended Liquid Crystalline Polymer: A Dielectric Property Approach. J. Chem. Phys. 1998, 109, 4587–4591. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, B.; Xiang, L.; Liu, Y.; Zhao, X.; Yin, J. Influence of Side Chain Sizes on Dielectric and Electrorheological Responses of Poly(ionic liquid)s. J. Phys. Chem. B 2017, 121, 6226–6237. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, J.; Dong, Y.; Zhao, X.; Yin, J. Enhanced Temperature Effect of Electrorheological Fluid Based on Cross-Linked Poly(ionic liquid) Particles: Rheological and Dielectric Relaxation Studies. Soft Matter 2017, 13, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- MacDiarmid, A.G.; Epstein, A.J. Polyanilines: A Novel Class of Conducting Polymers. Faraday Discuss. Chem. Soc. 1989, 88, 317–332. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G. Recent Advances in Polyaniline Research: Polymerization Mechanisms, Structural Aspects, Properties and Applications. Synthetic Met. 2013, 177, 1–47. [Google Scholar] [CrossRef]
- Marcilla, R.; Ochoteco, E.; Pozo-Gonzalo, C.; Grande, H.; Pomposo, J.A.; Mecerreyes, D. New Organic Dispersions of Conducting Polymers Using Polymeric Ionic Liquids as Stabilizers. Macromol. Rapid Commun. 2005, 26, 1122–1126. [Google Scholar] [CrossRef]
- Zheng, C.; Dong, Y.; Liu, Y.; Zhao, X.; Yin, J. Enhanced Stimuli-Responsive Electrorheological Property of Poly(ionic liquid)s-Capsulated Polyaniline Particles. Polymers 2017, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- Jamadade, V.S.; Dhawale, D.S.; Lokhande, C.D. Studies on Electrosynthesized Leucoemeraldine, Emeraldine and Pernigraniline Forms of Polyaniline Films and Their Supercapacitive Behavior. Synth. Met. 2010, 160, 955–960. [Google Scholar] [CrossRef]
- Yoon, S.B.; Yoon, E.H.; Kim, K.B. Electrochemical Properties of Leucoemeraldine, Emeraldine, and Pernigraniline Forms of Polyaniline/Multi-Wall Carbon Nanotube Nanocomposites for Supercapacitor Applications. J. Power Sources 2011, 196, 10791–10797. [Google Scholar] [CrossRef]
- Block, H.; Kelly, J.P. Electro-Rheology. J. Phys. D Appl. Phys. 1988, 21, 1661–1677. [Google Scholar] [CrossRef]
- Parthasarathy, M.; Klingenberg, D.J. Electrorheology: Mechanisms and Models. Mater. Sci. Eng. R 1996, 17, 57–103. [Google Scholar] [CrossRef]
- Davis, L.; Ginder, J. Electrostatic Forces in Electrorheological Fluids. In Progress in Electrorheology; Springer: Boston, MA, USA, 1995; pp. 107–114. [Google Scholar]
- Block, H.; Rattray, P. Recent developments in ER fluids. In Progress in Electrorheology: Science and Technology of Electrorheological Materials; Havelka, K.O., Filisko, F.E., Eds.; Springer: Boston, MA, USA, 1995; pp. 19–42. [Google Scholar]
- Pradhan, D.K.; Choudhary, R.N.P.; Samantaray, B.K. Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater. Chem. Phys. 2009, 115, 557–561. [Google Scholar] [CrossRef]
- Yin, J.; Chang, R.; Kai, Y.; Zhao, X. Highly Stable and AC Electric Field-Activated Electrorheological Fluid Based on Mesoporous Silica-Coated Graphene Nanosheets. Soft Matter 2013, 9, 3910–3914. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics, I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Zhao, K.; Wei, J.; Ngai, T. Dielectric Relaxations of Poly(N-isopropylacrylamide) Microgels Near the Volume Phase Transition Temperature: Impact of Cross-Linking Density Distribution on the Volume Phase Transition. Soft Matter 2014, 10, 8711–8723. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, Y.; Dong, Y.; He, F.; Zhao, X.; Yin, J. Low-Temperature Interfacial Polymerization and Enhanced Electro-Responsive Characteristic of Poly(ionic liquid)s@polyaniline Core-shell Microspheres. Macromol. Rapid Commun. 2019, 40, e1800351. [Google Scholar] [CrossRef]
- Nakamura, K.; Fukao, K.; Inoue, T. Dielectric Relaxation and Viscoelastic Behavior of Polymerized Ionic Liquids with Various Counteranions. Macromolecules 2012, 45, 3850–3858. [Google Scholar] [CrossRef]
- Kisliuk, A.; Bocharova, V.; Popov, I.; Gainaru, C.; Sokolov, A.P. Fundamental Parameters Governing Ion Conductivity in Polymer Electrolytes. Electrochim. Acta 2019, 299, 191–196. [Google Scholar] [CrossRef]
Sample | ε’∞ | ∆ε’ a | λ (s) | σ (S/m) | ||
---|---|---|---|---|---|---|
∆ε’1 | ∆ε’2 | λ1 | λ2 | |||
PIL | 2.89 | 3.65 | 3.7 × 10-4 | ~2.48 × 10−10 | ||
PIL/PANI(HCl) | 2.78 | 0.32 | 2.7 | 1.55 × 10−3 | 1.45 × 10−8 | ~4.78 × 10−8 |
PIL/PANI(NH3) | 2.80 | 2.78 | 0.8 | 1.40 × 10−3 | 9.10 × 10−2 | ~7.97 × 10−11 |
PIL/PANI(N2H4) | 2.76 | 2.72 | 0.4 | 1.68 × 10−4 | 4.10 × 10−1 | ~7.08 × 10−11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Lei, Q.; Zhao, J.; Zhao, X.; Yin, J. The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles. Polymers 2020, 12, 703. https://doi.org/10.3390/polym12030703
Zheng C, Lei Q, Zhao J, Zhao X, Yin J. The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles. Polymers. 2020; 12(3):703. https://doi.org/10.3390/polym12030703
Chicago/Turabian StyleZheng, Chen, Qi Lei, Jia Zhao, Xiaopeng Zhao, and Jianbo Yin. 2020. "The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles" Polymers 12, no. 3: 703. https://doi.org/10.3390/polym12030703