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Abstract: Seven different radiobiological dose-response models have been compared with 

regard to their ability to describe experimental data. The first four models, namely the 

critical volume, the relative seriality, the inverse tumor and the critical element models are 

mainly based on cell survival biology. The other three models: the Lyman (Gaussian 

distribution), the parallel architecture and the Weibull distribution models are  

semi-empirical and rather based on statistical distributions. The maximum likelihood 

estimation was used to fit the models to experimental data and the χ
2
-distribution, AIC 

criterion and F-test were applied to compare the goodness-of-fit of the models. The 

comparison was performed using experimental data for rat spinal cord injury. Both the 

shape of the dose-response curve and the ability of handling the volume dependence were 

separately compared for each model. All the models were found to be acceptable in 

describing the present experimental dataset (p > 0.05). For the white matter necrosis 

dataset, the Weibull and Lyman models were clearly superior to the other models, whereas 

for the vascular damage case, the Relative Seriality model seems to have the best 

performance although the Critical volume, Inverse tumor, Critical element and Parallel 

architecture models gave similar results. Although the differences between many of the 

investigated models are rather small, they still may be of importance in indicating the 

advantages and limitations of each particular model. It appears that most of the models 

have favorable properties for describing dose-response data, which indicates that they may 
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be suitable to be used in biologically optimized intensity modulated radiation therapy 

planning, provided a proper estimation of their radiobiological parameters had been 

performed for every tissue and clinical endpoint. 

Keywords: radiobiological models; NTCP; spinal cord complications 

 

1. Introduction 

The study of the dose-response relations in radiation therapy is important for improving 

quantification and knowledge about the mechanisms influencing the response of organs and tissues to 

radiation therapy. It is important to know the expected response level in normal tissues when 

irradiating a patient, since the aim of radiation therapy is to eradicate the tumor while sparing healthy 

normal tissues as far as possible. This is particularly important when using radiobiologically optimized 

radiation therapy where both the therapeutic effect and adverse normal tissue damage need to be 

accurately quantified in order to maximize the treatment outcome. Most often, the dose to the tumor is 

limited by the tolerance of the surrounding normal tissues. It is essential to understand the underlying 

biological processes for selecting the proper model, which can more accurately describe the normal 

tissue response and determine tissue tolerance in different situations. In this way, it will be possible to 

estimate the quality of life after the treatment by calculating the probability of tumor cure or local 

control and the associated risk of treatment related morbidity. 

There exist several types of volume effects, defined by the decrease in tissue function or increase in 

the probability of having a specific endpoint with increasing irradiated volume. The response of a 

tissue to radiation depends on the organization of its sensitive functional subunits, the volume of the 

irradiated tissue and possible irradiation of associated organs, and finally on the ability of the different 

cell types to maintain the tissue or organ function. The latter is often dependent on the way different 

types of cells are organized into functional subunits (FSUs) [1,2]. The functional arrangement of the 

FSUs of a tissue is critical for its radiation response both with regard to the dose distribution and the 

volume irradiated. The FSUs can be functionally arranged in series, parallel or have a mixed  

serial-parallel or cross-linked organization. Serially arranged FSUs are organized like links of a chain, 

such as the insulating myelin cells of the axons in the spinal cord. In such a case, the function of each 

FSU is critical for the function of the organ and elimination of any one of them may result in a 

measurable loss of function or an increased probability for complications. Therefore, in serial tissues 

the maximum dose largely determines the therapeutic response. However, when the FSUs are 

functionally organized in parallel, there is a redundancy where neighboring FSU can take over the 

function. In such tissues, the volume dependence of the dose-response relation is very significant since 

the response in a small high dose volume can be almost fully compensated by the surrounding FSUs. 

In parallel tissues, the mean dose is therefore the most important factor determining the clinical effect. 

Mixed serial-parallel tissue organizations are the most common and general way of tissue 

organization, combining the structure and function of the two basic arrangements [2]. The relative 

seriality model is designed to describe the gradual change in response from a closely serial tissue to 

one which is largely parallel. 
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Spinal cord is a critical normal tissue that almost at all cost should be spared during radiation 

therapy. It is an example of an organ with high serial arrangement of its functional subunits. It is built 

of nerve cells—Neurons, the axons of which are arranged in bundles along the organ. The 

characteristic H-shaped pattern on the spinal column cross section is a result of the arrangement of the 

nerve cell bodies and axons within the cord. The inner part, creating the H-letter shape consists of gray 

matter, while the white matter creates a more lipid rich, pale surrounding. 

It is well known that the material building the gray matter is mainly nerve cell bodies, while axons 

and the associated myelin cells are the ones constituting the white matter. In mammalian nerve tissue, 

the axons (e.g., motor neurons or sensory neurons) are equipped with a special layer of insulation, 

namely the myelin sheath. The myelin sheath is created by Schwann cells surrounding the axons of a 

neuron, increasing the integrity, speed and information content of the transmitted signal. 

There are often very serious consequences for exceeding the tolerance dose of normal tissues. As 

far as the latency period is concerned, radiation response can be divided into an early and a late 

occurring damage. There is a close correlation between the time of appearance of radiation-induced 

damage and the normal proliferative activity for a given tissue. The higher the rate of normal cell 

turnover, the faster the onset of the damage. In slowly proliferating tissues, such as spinal cord, the 

induction of radiation damage is considerably delayed in time. The late types of radiation-induced 

damage, in case of spinal cord myelopathy and paralysis, consist of two main endpoints: White matter 

necrosis and demyelination, occurring usually between six to eighteen months after irradiation, 

followed by vascular damage with an onset that ranges between one to four years. 

Modeling of normal tissue response to radiation has become an important domain of modern 

radiation therapy. Numerous models have been developed during the years to help in determining the 

optimal treatment. The process of creating such models usually involves many simplifying 

assumptions. The damage induction is considered stochastic, whereas the survival of cells follows 

either binomial or poisson statistics. The organ response is assumed to depend on either the response 

of individual cells and/or the response of the FSU. All the cells as well as all the FSUs are assumed to 

respond identically. The isoeffect relationships do not depend on the level of response and equal dose 

fractions are assumed to cause equal effects, provided the time separation is sufficient. Two connected 

levels of radiation response are generally modeled, namely survival of cells and response of an organ. 

Many models originate from an expression that describes cell survival and they incorporate this 

expression in the formula that describes the relation between dose and organ function. However, other 

models are purely phenomenological, which means that there is not any explicit formula for cell 

survival included. A radiobiological model, to be considered reliable, has to fulfill certain 

requirements. It should appropriately predict the shape of the dose-response curve as well as it should 

duly handle the volume and fractionation effects. 

Numerical quantitative comparisons of existing dose-response models have been done by many 

authors [3-9]. However, despite the great interest in this subject an important issue has not been taken 

into account in these studies, namely the separation of the volume effect from the dose-response of the 

whole organ. Being able to separate these two different phenomena should not only allow estimation 

of the accuracy and clinical validity of the models, but also make it possible to investigate the diversity 

of the models and emphasize the differences between them. A model combining accurate  
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dose-response description together with precise volume effect handling is required for accurate 

optimization of the treatment outcome. 

2. Materials and Methods 

Dose-response models can be categorized into several groups based on the statistical distribution 

they use for describing the sigmoid shape of the dose-response curve (Figure 1). The five distributions 

used in the models investigated in the present study are: the poisson, binomial, probit, logit and 

Weibull distributions. They constitute a basis for the following seven radiobiological models for 

normal tissue complication probability: (a) the Critical volume model [10] based on the binomial 

distribution for the dose-response curve shape; (b) the Relative Seriality model [2]; (c) the Inverse 

tumor model [2]; and (d) the Critical element model [11], all of which are based on the Poisson 

statistics; (e) the Lymna model [12] based on the Gaussian distribution or the probit function; (f) the 

Parallel architecture model [13] using the logit expression; and (g) the Weibull distribution model [14] 

based on the Weibull distribution. The first four models are using cell-survival-based response 

(Poisson and binomial distribution for the shape of the dose-response curve), while the other three 

models are more phenomenological. To rationalize the comparison in this paper, the expressions for 

NTCP of all the models have been rewritten in terms of D50, which is the dose that is associated with 

the 50% response probability and γ50, which is the gradient of the dose-response curve at the level of 

the 50% response probability (Table 1). 

Figure 1. Statistical distributions used in NTCP models to describe the shape of the  

dose-response curve. 
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Table 1. Overview of the examined dose-response models together with a summary of their inherent parameters. 
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Table 1. Cont. 
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2.1. Distributions Used for the Shape of Dose-Response Curve 

2.1.1. The binomial distribution 

Assuming N0 functional subunits and a probability of FSU survival, S(D), at a dose D gives the 

following probability of response: 

0( ) (1 ( ))
N

P D S D   (1) 

The following simple equation for exponential cell survival is used [15]: 

0/
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S D e


  (2) 

where D = n·d is the total dose, d is the dose per fraction, n is the number of fractions and D0 is the 

dose giving on average one lethal hit per FSU. Together with the binomial model for response, 

equation (1), the dose giving 50% response probability, D50, and the maximum value of the 

normalized dose-response gradient,   [16], become: 
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For large N0 the expressions for D50 and   for the binomial model become identical to the 

expressions for the Poisson model (Figure 1). 

The critical volume model has been developed by Niemierko and Goitein [17]. The probability P 

that more than M of the N FSUs are killed is given by the cumulative binomial probability: 
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where Pt is the probability that t of the N FSUs are killed,  N
t

 is the binomial coefficient, t

FSUP  is the 

complication probability for t functional subunits, while PFSU is the complication probability for one 

FSU. The NTCP for the entire inhomogeneously irradiated organ can be calculated using equation (6) 

with the PFSU being replaced by the effective complication probability for one FSU: 
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where Np is the number of calculation points inside the organ of interest, 
i

FSUP  is the complication 

probability for the i
th

 FSU and Di is the corresponding dose received. Due to the difficulties in 
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calculating the cumulative binomial distribution a normal distribution approximation suitable for 

numerical calculations is often used. 
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where: 

(1 )FSU FSU FSUN P P     (9) 

Such an approximation is more accurate for large (1 )FSU FSUN P P   values. 

2.1.2. The Poisson distribution 

The Poisson distribution is the limiting case of the binomial distribution when N0 is large and 

presents the probability of complications in normal tissue by: 

0 ( )
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P D e

 
  (10) 

where N0 is the number of functional subunits [1] and S(D) is a probability of an FSU surviving a 

dose, D. Thus, N0·S(D) becomes the average number of FSUs surviving a dose, D. Using the 

exponential cell survival equation (2) for clonogenic cell survival, together with the Poisson model, 

equation (10), for response, D50, and  , become: 

50 0 0(ln ln ln 2)D D N   (11) 
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0ln N

e
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Respectively, where e is the base of the natural logarithm. For models based on Poisson statistics 

the maximum slope of the dose-response relation is at the dose giving 37% probability of response. 

For that reason   is sometimes denoted as 37 . In order to facilitate the comparison between different 

models, also those using 50 , the following transformation can be used: 

50

ln 2
( ln ln 2)

2
e    (13) 

The relative seriality model was developed to better account for the functional organization of 

FSU’s [2]. An arbitrary combination of serial and parallel organized FSUs can be considered. For this 

model, normal tissue complication probability is mathematically expressed by: 

ref
1/

/
( , ) 1 (1 ( ) )

s
V VsP D V P D      (14) 

where V/Vref is the volume fraction being irradiated to dose D, s is the parameter which expresses the 

degree of seriality (the value varies from s close to zero for nearly parallel organs and upwards for 

increasing seriality), P(D) is given, e.g. by the Binomial or Poisson expression (10). 

The inverse tumor model [2] was based on a simplistic inverse tumor response and fundamentally it 

is not a real normal tissue model. The NTCP may then be approximated in the following way: 
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0( / )

0 ref( , ) exp ln( / )
D D

P D V N e k V V
      (15) 

where the free parameter k takes into account the importance of the volume effect in the tissue. 

The critical element model [17] is a simplified case of the relative seriality model, obtained by 

putting s = 1 into equation (14). The expression for NTCP is then given by: 

ref/
( , ) 1 (1 ( ))

V V
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where P(D) is given by equation (10). 

2.1.3. The Normal distribution 

Using the normal distribution function (the probit function) for the response results in the following 

expression: 
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The Lyman (Gaussian) model was developed by Lyman [12] based on the error or probit function 

form. In this case, the normal tissue complication probability is given by the following expression: 
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where the upper limit, t of the normal distribution probability function is defined as follows: 
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The model contains four free parameters: D50, n, m and Vref. D50 and Vref were defined above, while 

D50(1) is the tolerance dose for 50 % complications for uniform whole organ irradiation, 50 ref( / )D V V  is 

the 50 % tolerance dose for uniform partial organ irradiation. The volume dependence of the 

complication probability is determined by the parameter n, which quantifies the sensitivity of P to the 

irradiated volume of the organ. The slope of the dose response curve is governed by the value of the 

parameter m. The slope parameter m is inversely proportional to 50  through the relation 
50

1
m

 
 . 

2.1.4. The Logit distribution 

The logit distribution is an analytical sigmoidal shaped curve commonly used in biology defined in 

the following way: 
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The parallel architecture model [11,13,18] presents NTCP as an increasing function of the number 

of FSUs inactivated by radiation. The probability p that a dose D inactivates an FSU is given by the 

logit expression (21) where the slope parameter k = 
504  . The above sigmoid dose-response function, 

P(D) is assumed to describe the probability of damaging a subunit at a given biologically equivalent 

dose. Apart from the assumption that biologically equivalent doses can be calculated from the  

linear-quadratic formula, no connections of this probability with any underlying vascular mechanism 

of radiation injury or identification of the subunits involved has been attempted. Instead it has been 

chosen to describe the subunit response phenomenologically, using a logistic function of dose 

parameterized in terms of the dose D50 at which 50% of the subunits are damaged, and the slope 

parameter k, that determines the rate at which the probability of damaging a subunit increases with 

dose. For a given dose matrix the total fraction of FSUs, being inactivated is given by the sum over all 

the individual contributions: 

( )i if v P D  (22) 

where Di and vi are the dose and the volume fraction of the i
th

 voxel and f is the fractional damage. To 

fit the parallel architecture model to clinical data, expressions for both P(D) and the statistical 

distribution of functional reserves over the patient population are required. Normal tissue complication 

probability for a given Dose Volume Histogram (DVH) is calculated from the equation: 

2
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In which it is assumed that the cumulative functional reserve distribution can be described as a 

displaced error function and quantified by the mean value of the functional reserve, v50 and the width of the 

functional reserve distribution, σ. In this equation, v is the partial organ volume being irradiated [13,19,20]. 

2.1.5. The Weibull distribution model 

In this model the mathematical expression for NTCP, PI is based on a modified Weibull function [21]: 
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where A1, b and A2 are the three model parameters, which are determined from clinical data [14]. This 

can be rewritten in terms of D50 and 50  as: 



Cancers 2011, 3    

 

2431 

50

2

ln 2

50

( ) 1 exp ln 2
D

P D
D

 
       
 

  

 (25) 

2.2. Statistical Methods 

The model inter-comparison was performed both with and without considering the volume effect. 

This was made in order to separately evaluate and compare: (a) the accuracy by which the different 

models fit the shape of the dose-response curves from uniform dose irradiation; and (b) the ability of 

the different models to account for the volume effect. To be able to judge each of the above 

phenomena individually, we tried to separate them by removing the volume effect. This was achieved 

through a separate fit of the models for each spinal cord length, which was done by making a fit to 

each of the irradiated length of spinal cord separately without taking the volume dependence of the 

model into consideration, assuming that each partially irradiated length is a separate unit. Each of the 

models had a total of six free parameters to be estimated due to the cancelling of the ones describing 

the volume dependence. 

The Lyman (Gaussian) model is the most widely used model in the literature. For this reason the 

authors chose to use this model as a reference in order to be able to project the findings of the present 

study to other clinical studies where the Lyman model has been used for analyzing the treatment 

outcome data. 

To perform the fitting of the models to experimental data, the maximum likelihood method was 

used [21]. The maximum likelihood method is perhaps the most powerful estimation for two particular 

types of problems: (i) low-statistics experiments with insufficient data to satisfy the requirement of 

Gaussian statistics for individual histogram bins; and (ii) experiments in which the fitting function 

corresponds to a different probability density function for each measured event (meaning that each 

patient has a different weight in the calculations which is determined by the different dose distribution 

received). This method estimates the values of the model parameters that are more likely to produce a 

pattern of responses similar to the one of the observed clinical data. The larger the value of the 

likelihood function, the larger is the weight of evidence in favor of a given set of parameters. The 

logarithm of the likelihood function is often used for computational convenience. The logarithm of the 

likelihood function is the logarithm of probability that the experiment ends in the way it actually did. 

The larger the Log-likelihood value, the better the respective fit. This method was used in our study in 

order to both compare the overall fitting of all the investigated models to the experimental data  

(i.e., including the volume effect) as well as to compare the fitting of the models without accounting 

for the volume effect. 

After fitting the models to the clinical data, the goodness of fit of the models and their parameters 

was evaluated by the χ
2
-test, which was applied as suggested by Baltas and Grassman [4]. The χ

2
 

value, although referred to as a measure of goodness of fit, actually represents a measure of lack of fit 

and it should thus be as low as possible. This means that the smaller the χ
2
 or the reduced χ

2
 values 

(taking into account the number of degrees of freedom, DF that is the number of data points in the 

particular dataset reduced by the number of parameters in the respective model), the better the overall 
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fit of the model or the better the dose-response curve agrees with the experimental data, when the 

volume effect has been removed. 

An inter-comparison of the fitting of the models to the experimental data was done using the F-test 

method. The main principle of this method is to perform a comparison between a given model and the 

Lyman model with volume effect, which is the reference model, by comparing their fitted results to 

the experimental data. The F-test value is a probability distribution calculated for the χ
2
 value of the 

reference model divided by the χ
2
 value for the model under investigation. The smaller the F-test 

value, the better the compared model is in comparison to the reference model. The value of p = 0.5 

means that the compared model and the reference one are identical; for p < 0.5 the compared model is 

better than the reference one, while for p > 0.5 the reference model is better. For the inter-comparison 

of the overall fits of the models, the commonly used Gaussian distribution model was chosen as 

reference. In order to compare the fits of the models without accounting for the volume effect, their 

overall fits were compared with the corresponding fits without considering the volume effect for each 

individual model separately. For a more thorough discussion of the mentioned methods [22]. 

This analysis was based on a goodness-of-fit evaluation. Under the assumption of Gaussian errors 

around the true function describing survival, the model behavior was studied at different dose ranges 

for each clinical endpoint. The chi-square values were calculated and the corresponding p-values were 

determined taking into account the degrees of freedom. 

Also, the Akaike’s information criterion [23] was used to compare the accuracy and complexity of 

the different models. In the general case, the AIC is mathematically expressed as follows: 

2 2AIC k   (26) 

where χ
2
 is the chi-square value for the estimated model and k is the number of parameters in the 

statistical model. A lower Akaike number for a model means superiority of that model. 

2.3. Experimental Data 

The models were fitted to experimental data for paralysis after irradiation of spinal cord of rats [24], 

as presented in Table 2. The doses with which the corresponding spinal cord lengths were irradiated as 

well as the number of responders in the different irradiated groups are given. Using this data, the 

different parameters of the models were calculated for each of the endpoints using all the irradiated 

spinal cord lengths. The results were used to make an inter-comparison between the predictions of the 

different models. 

3. Results 

3.1. Comparison of the Models Using the Maximum Likelihood Function 

The best estimates as well as the 68% confidence intervals of the parameters of all the models are 

given in Table 3 for the white matter necrosis and in Table 4 for the vascular damage endpoint. In 

these tables only the parameter values from the fittings that considered volume effect are presented for 

each model. The respective parameter values from the fittings of the separate spinal cord segment 

lengths are shown in Figures 2 and 3 where the associated dose-response curves are plotted together 
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with those which are based on the parameter values from Tables 3 and 4. For all the models, the 

reference volume, Vref was defined by the reference spinal cord length of L0 = 16 mm corresponding to 

a relative volume v = 1 [4,25]. 

These values were determined using the maximum likelihood method to fit the complete set of 

experimental data (with volume effect) and the different spinal cord segment lengths, separately 

(without volume effect) in each case (white matter necrosis, vascular damage). For white matter 

necrosis, the degrees-of-freedom (DF) is 14 − k when volume effect is considered whereas it is  

14 − 3 * 2 = 8 (three spinal cord segments with two parameters to be determined for each segment) 

when volume effect is not considered. Similarly, for the vascular damage, the corresponding DF is 11 

− k and 11 − 3 * 2 = 5. 

Table 2. Dose-response data for developing white matter related spinal cord paralysis 

(white matter necrosis) within 30 weeks and paralysis or histological evidence of vascular 

lesions (vascular damage) after a latent interval of >30 weeks after single dose irradiation 

of the rat spinal cord [24]. 

Endpoint 
Field Length 

(mm) 
Dose (Gy) Responders (#) Group size (#) 

White matter 

necrosis 

16 

20 0 6 

21 3 6 

22 3 6 

23 6 6 

8 

22 0 6 

24 1 6 

28.5 2 6 

32.5 4 6 

40 5 5 

4 

39.1 0 6 

42.7 1 6 

47.8 2 6 

54.5 4 6 

70 6 6 

Vascular 

damage 

16 

18 0 6 

20 3 6 

21 3 3 

8 

20.4 1 6 

22 4 6 

24 4 5 

28.5 4 4 

4 

25.3 4 6 

30 4 6 

35.9 5 6 

39.1 6 6 
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Table 3. Model parameter values for white matter necrosis. The best estimates of the parameter values are given with their 68% confidence 

intervals. The values of the Log-likelihood function, χ
2
, degrees-of-freedom (DF) and probability of χ

2
 distribution (Pχ) that describe the 

goodness-of-fit of the models to the experimental data, with and without accounting for the volume effect. The inter-comparison of the 

models is performed, the AIC measure and the F-test, using the Lyman model as reference (with the volume effect). 

Name of the 

model 
D50 (Gy) γ50 Volume parameters 

Volume 

effect 

Log 

likelihood 
χ

2
 DF Pχ AIC F-test 

Critical volume 20.7 (20.3–21.2) 3.20 (2.6–3.3) 
M = 20 (18–21) 

N = 397 (320–431) 

With −35.6 12.75 10 0.24 20.75 0.57 

Without −32.0 4.57 8 0.80 16.57 0.92 

Relative seriality 21.3 (21.1–21.5) 4.0 (3.6–4.4) s = 0.01 (0.01–0.01) 
With −35.3 14.09 11 0.23 20.09 0.63 

Without −31.9 4.84 8 0.77 16.84 0.93 

Inverse tumor 19.5 (17.5–21.5) 1.0 (0.8–1.2) k = −3.1 (−3.6–−2.5) 
With −40.2 16.89 11 0.11 22.89 0.73 

Without −31.9 4.84 8 0.77 16.84 0.96 

Critical element 24.2 (23.1–26.0) 1.0 (0.7–1.3) s = 1.0 
With −47.3 25.76 12 0.01 29.76 0.90 

Without −31.9 4.84 8 0.77 16.84 0.99 

Lyman (Gaussian) 

Reference model 
21.0 (20.5–21.7) 4.0 (3.3–4.7) n = 0.62 (0.58–0.66) 

With −36.0 11.46 11 0.41 17.46 0.50 

Without −33.4 5.56 8 0.70 17.56 0.84 

Parallel 

architecture 
21.2 (18.0–30.4) 3.9 (3.2–5.1) 

v50 = 0.14 (0.13–0.16) 

σv = 0.03 (0.02–0.03) 

With −34.3 11.52 10 0.32 19.52 0.51 

Without −32.1 5.02 8 0.76 17.02 0.87 

Weibull 

distribution 
22.8 (22.6–23.4) 3.2 (2.5–4.0) b = 0.63 (0.59–0.66) 

With −35.4 10.33 11 0.50 16.33 0.43 

Without −31.6 4.26 8 0.83 16.26 0.89 



Table 4. Model parameter values for vascular damage. 

Name of the 

model 
D50 (Gy) γ50 Volume parameters 

Volume 

effect 

Log 

likelihood 
χ

2
 DF Pχ AIC F-test 

Critical volume  19.3 (19.0–19.7) 5.3 (4.1–6.2) 
M = 1 (0–10) 

N = 14 (6–40) 

With −26.2 4.11 7 0.77 12.11 0.08 

Without −25.1 2.21 5 0.82 14.21 0.93 

Relative seriality  19.9 (19.4–20.4) 6.7 (5.5–8.0) s = 0.28 (0.15–0.53) 
With −26.1 5.03 8 0.75 11.03 0.11 

Without −24.9 1.51 5 0.91 13.51 0.90 

Inverse tumor  20.2 (19.0–20.8) 2.0 (1.5–2.5) k = −0.9 (−1.4–−0.4) 

With 
−30.6 

13.1

7 
8 0.11 19.17 0.53 

Without −24.9 1.51 5 0.91 13.51 0.99 

Critical element  20.2 (19.7–20.3) 4.9 (3.9–6.1) s = 1.0 
With −26.8 5.62 9 0.78 9.62 0.13 

Without −24.9 1.51 5 0.91 13.51 0.92 

Lyman (Gaussian) 

Reference model 
19.6 (18.4–20.4) 2.6 (1.8–3.6) n = 0.20 (0.13–0.27) 

With 
−30.9 

12.4

1 
8 0.13 18.41 0.50 

Without −26.7 4.19 5 0.52 16.19 0.88 

Parallel 

architecture  
19.9 (19.0–21.5) 7.9 (5.9–8.2) 

v50 = 0.17 (0.14–0.19) 

σv = 0.07 (0.06–0.09) 

With −26.7 5.50 7 0.60 13.5 0.15 

Without −24.7 1.80 5 0.88 13.8 0.88 

Weibull 

distribution  
22.9 (21.9–23.5) 1.6 (1.2–2.0) b = 0.20 (0.13–0.27) 

With 
−31.1 

12.2

0 
8 0.14 18.2 0.49 

Without −24.7 1.97 5 0.85 13.97 0.97 
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Figure 2. Volume and dose-response curves for white matter necrosis of different lengths 

of rat cervical spinal cord. The solid lines give the combined best fitting. The dashed lines 

have been fitted to each of the irradiated spinal cord segment lengths separately,  

i.e., without any volume effect. 
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Figure 3. Volume and dose-response curves for vascular damage of different lengths of rat 

cervical spinal cord. The solid lines give the combined best fitting. The dashed lines have 

been fitted to each of the irradiated spinal cord segment lengths separately, i.e., without 

any volume effect. 
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For the white matter necrosis, as expected, the maximum value of the Log-likelihood function is 

higher in the fittings without volume effect since more parameters are used to fit each spinal cord 

segment length separately compared to the fittings with volume effect in the models. However, among 

the different models, the higher values were received by the Parallel architecture (−34.3) and the 

Relative Seriality (−35.3) models with volume effect and the Weibull (−31.6) and the Relative 

Seriality (−31.9) models without volume effect. However, the maximum value of the Log-likelihood 

function is only an approximate descriptor of the goodness-of-fit and it does not account for the mean 

and variance of the Log-likelihood function distribution around its maximum. 

Similar results hold for the vascular damage. Among the different models, the higher values of the 

maximum of the log-likelihood function were received by the Relative Seriality (−26.1) and the 

Critical volume (−26.2) models with volume effect and the Weibull (−24.7) and the Parallel 

architecture (−24.7) models without volume effect. 

3.2. Model Inter-Comparison Using the χ
2
 Distribution, AIC and F-Test Measures 

For the white matter necrosis, based on the χ
2
 and Pχ (probability of the χ

2
 distribution), the best 

fittings are achieved by the Weibull (10.33, 0.50) and the Lyman (11.46, 0.41) models with volume 

effect and the Critical volume (4.57, 0.80) and the Weibull (4.26, 0.83) models without volume effect. 

However, the values of χ
2
 and Pχ do not precisely account for the number of model parameters that 

have to be determined. More accurate descriptors for the goodness-of-fit and model inter-comparison 

are the AIC and the F-test measures. By using the AIC measure, the best fits are achieved by the 

Weibull (16.33) and the Lyman (17.46) models with volume effect and the Weibull (16.26) and the 

Critical volume (16.57) models without volume effect. Finally, when the F-test is used, the best fits are 

achieved by the Weibull (0.43) and the Lyman (0.50) models with volume effect and the Lyman 

(0.84) and the Parallel architecture (0.87) models without volume effect. 

For the vascular damage, based on the χ
2
 and Pχ the best fits are achieved by the Critical volume 

(4.11, 0.77) and the Relative Seriality (5.03, 0.75) models with volume effect and the Relative 

Seriality (1.51, 0.91) and the Parallel architecture (1.80, 0.88) models without volume effect. By using 

the AIC measure, the best fits are achieved by the Critical element (9.62) and the Relative Seriality 

(11.03) models with volume effect and the Relative Seriality, Inverse tumor and Critical element 

(13.51) models without volume effect. Finally, when the F-test is used, the best fits are achieved by 

the Critical volume (0.08) and the Relative Seriality (0.11) models with volume effect and the 

Lyman and Parallel architecture (0.88) models without volume effect. 

The qualitative part of this information can be observed in Figures 2 and 3, where the dose-

response curves of the different models based on the different fits are presented. The schematical 

illustration of the model dose-response curves against the experimental data can been a good 

indication about the accuracy of the fit. 

4. Conclusions 

Currently, in most clinical practices, when evaluating the fitness of a plan, the mean and maximum 

or minimum doses, isodose distributions and DVH are typically examined. However, these data do not 

take into account the biological characteristics of the examined tissue. That is because different 
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treatment plans may deliver different dose distributions to a given normal tissue getting the same response 

rate. Just as the dose volume histogram chart is a good illustration of the volumetric dose distribution 

delivered to the patient, so is the dose-response plot as a measure of the expected clinical outcome.  

It has been reported that radiobiological evaluation is more sensitive to small changes in dose 

distribution and the differences observed in the dose-response diagrams comparing different treatment 

plans are not always reflected in the DVH plots. This is because the way a certain dose distribution 

affects an organ depends on its radiobiological characteristics. Using the dose-response diagrams 

together with the dosimetric diagrams, a more complete picture of the effectiveness of a given 

treatment plan may be given. Consequently, there is an obvious need for radiobiological models that 

are able to describe quantitatively the normal tissue response and its dependence on the irradiated 

volume and dose level. In the present study, a comparison of available models has been made. The 

results of the fit of these models to the experimental data describing rat paralysis caused by white 

matter necrosis or vascular damage after irradiation gave a good indication that these models show a 

suitable behavior in describing relevant experimental data. 

The results and conclusions of this study are strongly dependent on the accuracy of the 

radiobiological models and the parameters describing the dose-response relation of the different 

tissues. However, it is known that all the existing models are based on certain assumptions or take into 

account certain only biological mechanisms. Furthermore, in clinical practice the determination of the 

model parameters expressing the effective radiosensitivity of the tissues is subject to uncertainties 

imposed by the inaccuracies in the patient setup during radiotherapy, lack of knowledge of the inter-

patient and intra-patient radiosensitivity and inconsistencies in treatment methodology. Consequently, 

the determined model parameters and the corresponding dose-response curves are characterized by 

confidence intervals. So, the expected response of a tissue is known with some uncertainty, which has 

become clinically acceptable for many cancer sites. 

Until now, in clinical practice the different tissues are generally assumed to have homogeneous 

radiosensitivity. DVHs are a good illustration of the volumetric dose distribution delivered to an organ 

but spatial dosimetric information gets lost. However, there is increasing evidence that the spatial 

information of the dose distribution is important in determining treatment complications. Therefore, 

although DVH simplifies a 3D dose distribution into a 2D plot, such a plot may not be representative of 

the efficacy of the given treatment technique and therefore may have not a close relation with treatment 

outcome. The presented models cannot account for any spatially distributed radiosensitivity variation in 

their present forms and they have to be further developed in order to incorporate such information.  

In order to compare the fit of the models to the experimental data four methods were used (the 

maximum likelihood method, the χ
2
 distribution, the AIC method and the F-test). The results for all 

the examined models based on the above statistical methods are shown in Tables 3 and 4.  

From the presented results one can clearly see that the range of differences between the different 

models in fitting the experimental data is large in the case that volume effect is accounted for (F-test: 

0.43–0.90 for white matter necrosis and 0.08–0.53 for vascular damage) whereas it is small in the case 

that the different spinal cord segment lengths are fitted separately (F-test: 0.84–0.99 for white matter 

necrosis and 0.88–0.99 for vascular damage). One should also observe that the confidence intervals of 

the determined parameters are rather large. Fine differences in the results may be caused by small 
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errors within the experimental dataset. Based on the above described results the following general 

conclusions can be drawn regarding the weak and strong points of the different models. 

The sigmoid shape of dose-response for the Weibull distribution is the reverse of that of the 

Poisson model and may therefore be better suited for some normal tissue responses where mild 

damage may be more clinically relevant. On the other hand, the Lyman model is a symmetric sigmoid, 

which may be suboptimal for describing the response of normal tissues. The relative seriality model, 

having ―fine-tuning‖ ability with the relative seriality parameter, s may be more suitable for fitting 

mixed to more serial tissues. 

In the case of white matter necrosis most of the models showed low but acceptable fitting results. 

The Weibull distribution model was the only model giving better overall fit than the Lyman model, 

which was the reference model in the F-test. Furthermore, the Lyman, Parallel architecture and 

Weibull distribution models were best in handling the volume effect, giving the best F-test results. On 

the other hand, the fitting results of the inverse tumor and the critical element models were 

considerably worse (showing much lower Log-likelihood values) than the ones of other models, when 

the volume effect was taken into account, whereas when making a fit without the volume effect the 

Lyman model gave inferior results with the lowest Log-likelihood value. 

Similarly, in the case of vascular damage, the models showed acceptable fitting results, which for 

many models were very good. More specifically, the Relative Seriality, Critical element, Critical 

volume and Parallel architecture models showed considerably better fitting results (higher  

Log-likelihood values) than the Inverse tumor, Lyman and Weibull distribution models when the 

volume dependence was taken into account. On the other hand, when the volume dependence was 

disregarded, apart from the Lyman and Critical volume models, the results of all the models were 

similar. The Critical volume, Relative Seriality, Critical element and Parallel architecture models gave the 

best overall fits handling volume effect in the best way, showing the lowest F-test values among all the 

models. On the other hand, the Lyman, Parallel architecture and Relative Seriality models gave the best 

fitting results (lowest F-test values) when the different spinal cord segment lengths were fitted separately. 

In clinical radiotherapy there is an increasing need for accurate models capable of describing the 

normal tissue response as a function of the dose and the irradiated volume. The present study is an 

overview of the existing models that are most frequently used in scientific reports or clinical studies. 

However, sill more effort has to be given on radiobiological studies that could develop new improved 

models, which would be able to more accurately account for further biological mechanisms and will 

become especially suitable for biologically optimized radiotherapy. 

By applying the different dose-response models on the same experimental data, their inherent 

structural differences could be revealed. Furthermore, the accuracy by which the volume effect is 

accounted for in the different models is examined. These issues have not been investigated in such a 

clear and systematic way before. Also, the expression of the basic dose-response parameters of the 

different models in terms of D50 and γ50 is very important for their clinical implementation and it has 

not been reported before. It has to be stated that the size of the experimental data is rather small. 

However, its structure is very clear for this type of analysis and conclusions about the behavior of the 

different models are possible to be made. In any case, more general conclusions cannot be made 

because the radiobiological characteristics of the different healthy tissues vary significantly. Furthermore, 
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the dose that is clinically delivered to these tissues is a 3-dimentional distribution, which does not provide a 

suitable context for demonstrating the volume effect handling by the different models. 

In the literature there are several articles that deal with radiobiological studies which have 

evaluated and improved models based on biologically optimized clinical radiotherapy treatment plans. 

Although such studies may be more suitable for the extraction of clinical results in relation to a given 

radiobiological model, the nature of those studies is mainly to determine the values of the 

radiobiological model parameters regarding a given treatment technique and clinical endpoint. 

However, the structure of such clinical data is not suitable for performing the type of analysis that is 

performed in the present study in order to make a more clear inter-comparison that will reveal the 

inherent characteristics and differences of the examined models. 

Today, all organs are assumed to be totally uniform and amorphous, whereas we know that some organ 

regions are more sensitive and others more tolerant to radiation. In the future, such variations need to be 

considered, e.g., by splitting the hilus region from the rest of the organ in most organs of mixed  

serial-parallel organization. Fortunately, this has not been a major problem in this study. However, if white 

and gray matter had been separately irradiated this would have been the case here, too. 
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