Remote Sens. 2017, 9(9), 901; doi:10.3390/rs9090901
The Impact of Mapping Error on the Performance of Upscaling Agricultural Maps
1
State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
2
Institute of Remote Sensing and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
3
Department of Natural Resources & the Environment, University of New Hampshire, Durham, NH 03824, USA
*
Author to whom correspondence should be addressed.
Academic Editors: Clement Atzberger, Yoshio Inoue and Parth Sarathi Roy
Received: 19 July 2017 / Revised: 8 August 2017 / Accepted: 29 August 2017 / Published: 31 August 2017
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Abstract
Aggregation methods are the most common way of upscaling land cover maps. To analyze the impact of land cover mapping error on upscaling agricultural maps, we utilized the Cropland Data Layer (CDL) data with corresponding confidence level data and simulated eight levels of error using a Monte Carlo simulation for two Agriculture Statistic Districts (ASD) in the U.S.A. The results of the simulations were used as base maps for subsequent upscaling, utilizing the majority rule based aggregation method. The results show that increasing error level resulted in higher proportional errors for each crop in both study areas. As a result of increasing error level, landscape characteristics of the base map also changed greatly resulting in higher proportional error in the upscaled maps. Furthermore, the proportional error is sensitive to the crop area proportion in the base map and decreases as the crop proportion increases. These findings indicate that three factors, the error level of the thematic map, the change in landscape pattern/characteristics of the thematic map, and the objective of the project, should be considered before performing any upscaling. The first two factors can be estimated by using pre-existing land cover maps with relatively high accuracy. The third factor is dependent on the project requirements (e.g., landscape characteristics, proportions of cover types, and use of the upscaled map). Overall, improving our understanding of the impacts of land cover mapping error is necessary to the proper design for upscaling and obtaining the optimal upscaled map. View Full-Text
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Sun, P.; Congalton, R.G.; Grybas, H.; Pan, Y. The Impact of Mapping Error on the Performance of Upscaling Agricultural Maps. Remote Sens. 2017, 9, 901.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Remote Sens.
EISSN 2072-4292
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert