Next Article in Journal
Estimating Daily Reference Evapotranspiration in a Semi-Arid Region Using Remote Sensing Data
Previous Article in Journal
Supervised Classification of Power Lines from Airborne LiDAR Data in Urban Areas
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(8), 772; doi:10.3390/rs9080772

Continental Shelf-Scale Passive Acoustic Detection and Characterization of Diesel-Electric Ships Using a Coherent Hydrophone Array

1
Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
2
Institute of Marine Research, Post Office Box 1870, Nordnes, N-5817 Bergen, Norway
*
Author to whom correspondence should be addressed.
Received: 11 June 2017 / Revised: 21 July 2017 / Accepted: 24 July 2017 / Published: 28 July 2017
(This article belongs to the Section Ocean Remote Sensing)

Abstract

The passive ocean acoustic waveguide remote sensing (POAWRS) technique is employed to detect and characterize the underwater sound radiated from three scientific research and fishing vessels received at long ranges on a large-aperture densely-sampled horizontal coherent hydrophone array. The sounds radiated from the research vessel (RV) Delaware II in the Gulf of Maine, and the RV Johan Hjort and the fishing vessel (FV) Artus in the Norwegian Sea are found to be dominated by distinct narrowband tonals and cyclostationary signals in the 150 Hz to 2000 Hz frequency range. The source levels of these signals are estimated by correcting the received pressure levels for transmission losses modeled using a calibrated parabolic equation-based acoustic propagation model for random range-dependent ocean waveguides. The probability of the detection region for the most prominent signal radiated by each ship is estimated and shown to extend over areas spanning roughly 200 km in diameter when employing a coherent hydrophone array. The current standard procedure for quantifying ship-radiated sound source levels via one-third octave bandwidth intensity averaging smoothes over the prominent tonals radiated by a ship that can stand 10 to 30 dB above the local broadband level, which may lead to inaccurate or incorrect assessments of the impact of ship-radiated sound. View Full-Text
Keywords: ship noise; passive ocean acoustic waveguide remote sensing; source level; ship tonal ship noise; passive ocean acoustic waveguide remote sensing; source level; ship tonal
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Huang, W.; Wang, D.; Garcia, H.; Godø, O.R.; Ratilal, P. Continental Shelf-Scale Passive Acoustic Detection and Characterization of Diesel-Electric Ships Using a Coherent Hydrophone Array. Remote Sens. 2017, 9, 772.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top