Next Article in Journal
Improving Super-Resolution Mapping by Combining Multiple Realizations Obtained Using the Indicator-Geostatistics Based Method
Previous Article in Journal
On the Objectivity of the Objective Function—Problems with Unsupervised Segmentation Evaluation Based on Global Score and a Possible Remedy
Previous Article in Special Issue
Parallel Seasonal Patterns of Photosynthesis, Fluorescence, and Reflectance Indices in Boreal Trees
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(8), 770; doi:10.3390/rs9080770

Diurnal Cycle Relationships between Passive Fluorescence, PRI and NPQ of Vegetation in a Controlled Stress Experiment

Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain
*
Author to whom correspondence should be addressed.
Received: 8 May 2017 / Revised: 7 July 2017 / Accepted: 21 July 2017 / Published: 28 July 2017
View Full-Text   |   Download PDF [3246 KB, uploaded 28 July 2017]   |  

Abstract

In order to estimate vegetation photosynthesis from remote sensing observations; some critical parameters need to be quantified. From all absorbed light; the plant needs to release any excess that is not used for photosynthesis; by non-photochemical quenching; by fluorescence emission and unregulated thermal dissipation. Non-photochemical quenching (NPQ) processes are controlled photoprotective mechanisms which; once activated; strongly control the dynamics of photochemical efficiency. With illumination conditions increasing and decreasing during a diurnal cycle; photoprotection mechanisms needs to change accordingly. The goal of this work is to quantify dynamic NPQ; measured from active fluorescence measurements; based on passive proximal sensing leaf measurements. During a 22-day controlled light and water stress experiment on a tobacco (Nicotiana tabacum L.) leaf we measured the diurnal dynamics of passive fluorescence (Chl F); the Photochemical Reflectance Index (PRI); the Absorbed Photosynthetically Active Radiation (APAR) and leaf temperature in combination with the actively retrieved non-photochemical quenching (NPQ) parameter. Based on a bi-linear combination of diurnal APAR and PRI (plane fit model) we succeeded to estimate NPQ with a RMSE of 0.08. The simple plane fit model estimation represents well the diurnal NPQ dynamics; except for the high light stress phase; when additional reversible photoinhibition processes took place. The present works presents a way of determining NPQ from passive remote sensing measurements; as a necessary step towards estimating photosynthetic rate. View Full-Text
Keywords: drought; stress; non-photochemical energy dissipation; solar-induced fluorescence (SIF); photosynthesis; non-photochemical quenching (NPQ); Photochemical Reflectance Index (PRI); FLuorescence EXplorer; (FLEX) drought; stress; non-photochemical energy dissipation; solar-induced fluorescence (SIF); photosynthesis; non-photochemical quenching (NPQ); Photochemical Reflectance Index (PRI); FLuorescence EXplorer; (FLEX)
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Alonso, L.; Van Wittenberghe, S.; Amorós-López, J.; Vila-Francés, J.; Gómez-Chova, L.; Moreno, J. Diurnal Cycle Relationships between Passive Fluorescence, PRI and NPQ of Vegetation in a Controlled Stress Experiment. Remote Sens. 2017, 9, 770.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top