Next Article in Journal
Land-Air Interactions over Urban-Rural Transects Using Satellite Observations: Analysis over Delhi, India from 1991–2016
Previous Article in Journal
Comparative Study on Assimilating Remote Sensing High Frequency Radar Surface Currents at an Atlantic Marine Renewable Energy Test Site
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(12), 1332; doi:10.3390/rs9121332

Fractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau

1
State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
2
College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
*
Author to whom correspondence should be addressed.
Received: 20 October 2017 / Revised: 6 December 2017 / Accepted: 17 December 2017 / Published: 19 December 2017
View Full-Text   |   Download PDF [8009 KB, uploaded 21 December 2017]   |  

Abstract

Moderate-resolution imaging spectroradiometer (MODIS) snow-cover products have relatively low accuracy over the Tibetan Plateau because of its complex terrain and shallow, fragmented snow cover. In this study, fractional snow-cover (FSC) mapping algorithms were developed using a linear regression model (LR), a linear spectral mixture analysis model (LSMA) and a back-propagation artificial neural network model (BP-ANN) based on MODIS data (version 006) and unmanned aerial vehicle (UAV) data. The accuracies of the three models were validated against Landsat 8 Operational Land Imager (OLI) snow-cover maps (Landsat 8 FSC) and compared with the MODIS global FSC product (MOD10A1 FSC, version 005) for the purpose of finding the optimal algorithm for FSC extraction for the Tibetan Plateau. The results showed that (1) the overall retrieval results of the LR and BP-ANN models based on MODIS and UAV data were relatively similar to the OLI snow-cover maps; the accuracy and stability were greatly improved, with even some reduction in errors; compared to the Landsat 8 FSC, the correlation coefficients (r) were 0.8222 and 0.8445 respectively and the root-mean-square errors (RMSEs) were 0.2304 and 0.2201, respectively. (2) The accuracy and stability of the fully constrained LSMA model using the pixel purity index (PPI) endmember extraction method based only on MODIS data suffered the worst performance of the three models; r was only 0.7921 and the RMSE was as large as 0.3485. There were some serious omission phenomena in the study area, specifically for the largest mean absolute error (MAE = 0.2755) and positive mean error (PME = 0.3411). (3) The accuracy of the MOD10A1 FSC product was much lower than that of the LR and BP-ANN models, although its accuracy slightly better that of the LSMA based on comprehensive evaluation of six accuracy indices. (4) The optimal model was the BP-ANN model with combined inputs of surface reflectivity data (R1–R7), elevation (DEM) and temperature (LST), which can easily incorporate auxiliary information (DEM and LST) on the basis of (R1–R7) during the relationship training period and can effectively improve the accuracy of snow area monitoring—it is the ideal algorithm for retrieving FSC for the Tibetan Plateau. View Full-Text
Keywords: fractional snow-cover; MODIS; UAV; Tibetan Plateau fractional snow-cover; MODIS; UAV; Tibetan Plateau
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Liang, H.; Huang, X.; Sun, Y.; Wang, Y.; Liang, T. Fractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau. Remote Sens. 2017, 9, 1332.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top