Next Article in Journal
SAR Image De-Noising Based on Shift Invariant K-SVD and Guided Filter
Previous Article in Journal
A Bayesian Data Fusion Approach to Spatio-Temporal Fusion of Remotely Sensed Images
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(12), 1308; https://doi.org/10.3390/rs9121308

Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height of Aquatic Reed Beds at Lake Chiemsee, Bavaria—Germany

Aquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Department of Ecology and Ecosystem Management, Technical University of Munich, Hofmark 1-3, 82393 Iffeldorf, Germany
*
Author to whom correspondence should be addressed.
Received: 25 October 2017 / Revised: 28 November 2017 / Accepted: 9 December 2017 / Published: 13 December 2017
Full-Text   |   PDF [5088 KB, uploaded 13 December 2017]   |  

Abstract

Aquatic reed is an important indicator for the ecological assessment of freshwater lakes. Monitoring is essential to document its expansion or deterioration and decline. The applicability of Green-LiDAR data for the status assessment of aquatic reed beds of Bavarian freshwater lakes was investigated. The study focused on mapping diagnostic structural parameters of aquatic reed beds by exploring 3D data provided by the Green-LiDAR system. Field observations were conducted over 14 different areas of interest along 152 cross-sections. The data indicated the morphologic and phenologic traits of aquatic reed, which were used for validation purposes. For the automatic classification of aquatic reed bed spatial extent, density and height, a rule-based algorithm was developed. LiDAR data allowed for the delimitating of the aquatic reed frontline, as well as shoreline, and therefore an accurate quantification of extents (Hausdorff distance = 5.74 m and RMSE of cross-sections length 0.69 m). The overall accuracy measured for aquatic reed bed density compared to the simultaneously recorded aerial imagery was 96% with a Kappa coefficient of 0.91 and 72% (Kappa = 0.5) compared to field measurements. Digital Surface Models (DSM), calculated from point clouds, similarly showed a high level of agreement in derived heights of flat surfaces (RMSE = 0.1 m) and showed an adequate agreement of aquatic reed heights with evenly distributed errors (RMSE = 0.8 m). Compared to field measurements, aerial laser scanning delivered valuable information with no disturbance of the habitat. Analysing data with our classification procedure improved the efficiency, reproducibility, and accuracy of the quantification and monitoring of aquatic reed beds. View Full-Text
Keywords: LiDAR; ALS; Phragmites australis; aquatic reed; OPALS; point cloud; classification; vegetation mapping LiDAR; ALS; Phragmites australis; aquatic reed; OPALS; point cloud; classification; vegetation mapping
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Corti Meneses, N.; Baier, S.; Geist, J.; Schneider, T. Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height of Aquatic Reed Beds at Lake Chiemsee, Bavaria—Germany. Remote Sens. 2017, 9, 1308.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top