Next Article in Journal
We Must all Pay More Attention to Rigor in Accuracy Assessment: Additional Comment to “The Improvement of Land Cover Classification by Thermal Remote Sensing”. Remote Sens. 2015, 7, 8368–8390
Next Article in Special Issue
Complex Deformation Monitoring over the Linfen–Yuncheng Basin (China) with Time Series InSAR Technology
Previous Article in Journal
Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration
Previous Article in Special Issue
Anatomy of Subsidence in Tianjin from Time Series InSAR
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(4), 272; doi:10.3390/rs8040272

An Automatic Procedure for Early Disaster Change Mapping Based on Optical Remote Sensing

1
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Academic Editors: Zhenhong Li, Roberto Tomas, Norman Kerle and Prasad S. Thenkabail
Received: 27 October 2015 / Revised: 7 March 2016 / Accepted: 11 March 2016 / Published: 26 March 2016
(This article belongs to the Special Issue Earth Observations for Geohazards)

Abstract

Disaster change mapping, which can provide accurate and timely changed information (e.g., damaged buildings, accessibility of road and the shelter sites) for decision makers to guide and support a plan for coordinating emergency rescue, is critical for early disaster rescue. In this paper, we focus on optical remote sensing data to propose an automatic procedure to reduce the impacts of optical data limitations and provide the emergency information in the early phases of a disaster. The procedure utilizes a series of new methods, such as an Optimizable Variational Model (OptVM) for image fusion and a scale-invariant feature transform (SIFT) constraint optical flow method (SIFT-OFM) for image registration, to produce product maps including cloudless backdrop maps and change-detection maps for catastrophic event regions, helping people to be aware of the whole scope of the disaster and assess the distribution and magnitude of damage. These product maps have a rather high accuracy as they are based on high precision preprocessing results in spectral consistency and geometric, which compared with traditional fused and registration methods by visual qualitative or quantitative analysis. The procedure is fully automated without any manual intervention to save response time. It also can be applied to many situations. View Full-Text
Keywords: disaster emergency mapping; optical image; automatic procedure; OptVM; SIFT-OFM disaster emergency mapping; optical image; automatic procedure; OptVM; SIFT-OFM
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ma, Y.; Chen, F.; Liu, J.; He, Y.; Duan, J.; Li, X. An Automatic Procedure for Early Disaster Change Mapping Based on Optical Remote Sensing. Remote Sens. 2016, 8, 272.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top