Next Article in Journal
On the Synergy of Airborne GNSS-R and Landsat 8 for Soil Moisture Estimation
Previous Article in Journal
A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2015, 7(8), 9928-9953; doi:10.3390/rs70809928

Aerosol Optical and Microphysical Properties of Four Typical Sites of SONET in China Based on Remote Sensing Measurements

1
State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Academic Editors: Richard Müller and Prasad S. Thenkabail
Received: 28 March 2015 / Revised: 24 July 2015 / Accepted: 28 July 2015 / Published: 5 August 2015
View Full-Text   |   Download PDF [794 KB, uploaded 5 August 2015]   |  

Abstract

The current understanding of columnar aerosol optical and microphysical properties of different regions and seasons in China is insufficient due to the lack of measurements. Aiming to improve descriptions of aerosol models over China, this paper presents a systematic aerosol characterization of different sites based on a newly developed remote sensing network for aerosol observation, the Sun-sky radiometer Observation NETwork (SONET). One year of ground-based solar and sky radiation measurements of four typical sites of SONET (Beijing–urban-industrial site, Zhangye—rural site, Minqin—desert site, Zhoushan–oceanic site) are used to retrieve aerosol properties using similar inversion algorithms with AErosol RObotic NETwork (AERONET), including aerosol optical depth, Ångström exponent, volume size distribution, complex refractive index, single scattering albedo, and percentage of spherical particles. The retrieved properties among sites and seasons are found to be different in terms of magnitude, spectral dependence, and partition of fine and coarse mode, which can be primarily explained by different aerosol composition and mixing states that closely relate to the local climate, the natural environment, and most importantly, the ubiquitous anthropogenic impacts. For example, large dust particles greatly contribute to the low fine mode fraction in both volume concentration and optical depth for the Minqin site through the entire year, while abundant small particles that mainly come from emission sources dominate the size distribution and light extinction of aerosol in the summer at the Beijing site. The results also show general agreements with other studies on the aerosol properties at each site, however, some unique features are still noticeable, especially at the desert site and oceanic site (e.g., the unusually strong aerosol absorptivity indicated by the large imaginary refractive index and low single scattering albedo at the Minqin and Zhoushan sites), which can be partly attributed to the existence of absorbing particles coming from anthropogenic sources. View Full-Text
Keywords: optical and microphysical properties; sun-sky radiometer; urban-industrial aerosol; rural aerosol; dust aerosol; oceanic aerosol optical and microphysical properties; sun-sky radiometer; urban-industrial aerosol; rural aerosol; dust aerosol; oceanic aerosol
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Xie, Y.; Li, Z.; Li, D.; Xu, H.; Li, K. Aerosol Optical and Microphysical Properties of Four Typical Sites of SONET in China Based on Remote Sensing Measurements. Remote Sens. 2015, 7, 9928-9953.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top