Next Article in Journal
Surface Shortwave Net Radiation Estimation from FengYun-3 MERSI Data
Previous Article in Journal
Topo-Bathymetric LiDAR for Monitoring River Morphodynamics and Instream Habitats—A Case Study at the Pielach River
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2015, 7(5), 6196-6223; doi:10.3390/rs70506196

Supervised Vicarious Calibration (SVC) of Multi-Source Hyperspectral Remote-Sensing Data

1
The Spectroscopy and Remote Sensing Laboratory, Center for Spatial Analysis Research (UHCSISR), Department of Geography and Environmental Studies, University of Haifa, Mount Carmel 3498838, Israel
2
Remote Sensing Laboratory, Department of Geography and Human Environment, Tel-Aviv University, Ramat Aviv 69978, Israel
*
Author to whom correspondence should be addressed.
Academic Editors: Richard Müller and Prasad S. Thenkabail
Received: 18 September 2014 / Accepted: 14 May 2015 / Published: 19 May 2015
View Full-Text   |   Download PDF [18423 KB, uploaded 19 May 2015]   |  

Abstract

Introduced in 2011, the supervised vicarious calibration (SVC) approach is a promising approach to radiometric calibration and atmospheric correction of airborne hyperspectral (HRS) data. This paper presents a comprehensive study by which the SVC method has been systematically examined and a complete protocol for its practical execution has been established—along with possible limitations encountered during the campaign. The technique was applied to multi-sourced HRS data in order to: (1) verify the at-sensor radiometric calibration and (2) obtain radiometric and atmospheric correction coefficients. Spanning two select study sites along the southeast coast of France, data were collected simultaneously by three airborne sensors (AisaDUAL, AHS and CASI-1500i) aboard two aircrafts (CASA of National Institute for Aerospace Technology INTA ES and DORNIER 228 of NERC-ARSF Centre UK). The SVC ground calibration site was assembled along sand dunes near Montpellier and the thematic data were acquired from other areas in the south of France (Salon-de-Provence, Marseille, Avignon and Montpellier) on 28 October 2010 between 12:00 and 16:00 UTC. The results of this study confirm that the SVC method enables reliable inspection and, if necessary, in-situ fine radiometric recalibration of airborne hyperspectral data. Independent of sensor or platform quality, the SVC approach allows users to improve at-sensor data to obtain more accurate physical units and subsequently improved reflectance information. Flight direction was found to be important, whereas the flight altitude posed very low impact. The numerous rules and major outcomes of this experiment enable a new standard of atmospherically corrected data based on better radiometric output. Future research should examine the potential of SVC to be applied to super-and-hyperspectral data obtained from on-orbit sensors. View Full-Text
Keywords: supervised vicarious calibration; radiometric cross-calibration; hyperspectral; multi-source imagery data; radiometric uncertainty; calibration coefficient; atmospheric correction supervised vicarious calibration; radiometric cross-calibration; hyperspectral; multi-source imagery data; radiometric uncertainty; calibration coefficient; atmospheric correction
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Brook, A.; Ben-Dor, E. Supervised Vicarious Calibration (SVC) of Multi-Source Hyperspectral Remote-Sensing Data. Remote Sens. 2015, 7, 6196-6223.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top