Next Article in Journal
Sentinel-1 for Monitoring Reservoirs: A Performance Analysis
Previous Article in Journal
Using Airborne LiDAR and QuickBird Data for Modelling Urban Tree Carbon Storage and Its Distribution—A Case Study of Berlin
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2014, 6(11), 10656-10675; doi:10.3390/rs61110656

Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence

1
Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Received: 20 July 2014 / Revised: 23 September 2014 / Accepted: 27 October 2014 / Published: 3 November 2014
View Full-Text   |   Download PDF [3598 KB, uploaded 3 November 2014]   |  

Abstract

In contrast to ground-based solar-induced chlorophyll fluorescence (Fs) detection, the influence of atmospheric radiation transfer is the major difficulty in Fs retrieval from space. In this study, we first simulated top-of-atmosphere (TOA) radiance using FluorMODgui3.1 and MODTRAN5 code. Based on the simulated dataset, we analyzed the sensitivities of five potential Fs retrieval bands (Hα, K I, Fe, O2-A, and O2-B) to different atmospheric transfer parameters, including atmosphere profile, aerosol optical depth (AOD550), vertical water vapor column (H2O), vertical ozone column (O3), solar zenith angle (SZA), view zenith angle (VZA), relative azimuth angle (RAA) and elevation. The results demonstrate that the Hα, O2-A and O2-B bands are the most sensitive to these atmospheric parameters. However, only the O2-A and O2-B bands were found to be sensitive to the imaging geometric parameters. When the spectral resolution was sufficient, the K I and Fe bands proved to have the best potential for space-based Fs retrieval given the current available accuracies of atmospheric products, while the O2-A band was shown to perform better at lower spectral resolutions. The band sensitivity analysis presented here will be useful for band selection and atmospheric correction for space-based Fs retrieval. View Full-Text
Keywords: sensitivity analysis; band selection; solar-induced chlorophyll fluorescence; atmospheric radiation transfer sensitivity analysis; band selection; solar-induced chlorophyll fluorescence; atmospheric radiation transfer
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Liu, X.; Liu, L. Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence. Remote Sens. 2014, 6, 10656-10675.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top