Next Article in Journal
Exploring the Potential for Automatic Extraction of Vegetation Phenological Metrics from Traffic Webcams
Next Article in Special Issue
The Intercomparison of X-Band SAR Images from COSMO‑SkyMed and TerraSAR-X Satellites: Case Studies
Previous Article in Journal
Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud
Previous Article in Special Issue
Hidden Markov Models for Real-Time Estimation of Corn Progress Stages Using MODIS and Meteorological Data
Remote Sens. 2013, 5(5), 2184-2199; doi:10.3390/rs5052184
Article

Forecasting Regional Sugarcane Yield Based on Time Integral and Spatial Aggregation of MODIS NDVI

1,2,3,* , 2
,
2,4
 and
5
Received: 15 March 2013 / Revised: 26 April 2013 / Accepted: 26 April 2013 / Published: 10 May 2013
(This article belongs to the Special Issue Advances in Remote Sensing of Agriculture)
View Full-Text   |   Download PDF [1080 KB, 19 June 2014; original version 19 June 2014]   |   Browse Figures

Abstract

This study explored the suitability of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectrometer (MODIS) obtained for six sugar management zones, over nine years (2002–2010), to forecast sugarcane yield on an annual and zonal base. To take into account the characteristics of the sugarcane crop management (15-month cycle for a ratoon, accompanied with continuous harvest in Western Kenya), the temporal series of NDVI was normalized through an original weighting method that considered the growth period of the sugarcane crop (wNDVI), and correlated it with historical yield datasets. Results when using wNDVI were consistent with historical yield and significant at P-value = 0.001, while results when using traditional annual NDVI integrated over the calendar year were not significant. This correlation between yield and wNDVI is mainly drawn by the spatial dimension of the data set (R2 = 0.53, when all years are aggregated together), rather than by the temporal dimension of the data set (R2 = 0.1, when all zones are aggregated). A test on 2012 yield estimation with this model realized a RMSE less than 5 t·ha−1. Despite progress in the methodology through the weighted NDVI, and an extensive spatio-temporal analysis, this paper shows the difficulty in forecasting sugarcane yield on an annual base using current satellite low-resolution data. This is particularly true in the context of small scale farmers with fields measuring less than the size of MODIS 250 m pixel, and in the context of a 15-month crop cycle with no seasonal cropping calendar. Future satellite missions should permit monitoring of sugarcane yields using image resolutions that facilitate extraction of crop phenology from a group of individual plots.
Keywords: MODIS; NDVI; environment; sugarcane; yield forecasting MODIS; NDVI; environment; sugarcane; yield forecasting
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Mulianga, B.; Bégué, A.; Simoes, M.; Todoroff, P. Forecasting Regional Sugarcane Yield Based on Time Integral and Spatial Aggregation of MODIS NDVI. Remote Sens. 2013, 5, 2184-2199.

View more citation formats

Article Metrics

Comments

Citing Articles

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert