Next Article in Journal
The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating
Previous Article in Journal
The Application of Deep Convective Clouds in the Calibration and Response Monitoring of the Reflective Solar Bands of FY-3A/MERSI (Medium Resolution Spectral Imager)
Remote Sens. 2013, 5(12), 6976-6996; doi:10.3390/rs5126976
Article

Distribution of Actual Evapotranspiration over Qaidam Basin, an Arid Area in China

* ,
 and
Received: 30 October 2013 / Revised: 21 November 2013 / Accepted: 9 December 2013 / Published: 13 December 2013
View Full-Text   |   Download PDF [2376 KB, uploaded 19 June 2014]   |   Browse Figures

Abstract

Evapotranspiration is a major loss flux of the water balance in arid and semi-arid areas. The estimation of actual evapotranspiration has significance for hydrological and environmental purposes. The Surface Energy Balance System (SEBS) algorithm was applied to estimate actual evapotranspiration in the Qaidam Basin and its eight hydrological sub-regions, Northwest China. There were 3,036 cloud-free and atmospherically corrected MODIS satellite images from 2001 to 2011 used in the SEBS algorithm to determine the actual evapotranspiration. The result indicated that the estimated annual actual evapotranspiration of the basin increased with time and the value varied from 72.7 to 182.3 mm. SEBS estimates were 7.5% and 14.1% of observed pan evaporation over the western and eastern areas, respectively. The variation of SEBS actual evapotranspiration is influenced by climate factors, vegetation, net radiation, land cover type and water table depth. The analysis of the evaporative behavior of different land cover types in the basin presented that water bodies, marsh, and farmland had relatively higher mean actual evapotranspiration though these land cover types make up less than 3.5% of the total basin. Bare soil has very low evapotranspiration and covered almost 60% of the study area. The actual evapotranspiration was observed to be decreased with an increase of water table depth. Overall, the SEBS algorithm proved to be useful and has potential for estimating spatial actual evapotranspiration on a regional scale.
Keywords: evapotranspiration; SEBS; vegetation; land cover type; water table depth evapotranspiration; SEBS; vegetation; land cover type; water table depth
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Jin, X.; Guo, R.; Xia, W. Distribution of Actual Evapotranspiration over Qaidam Basin, an Arid Area in China. Remote Sens. 2013, 5, 6976-6996.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert