Remote Sens. 2013, 5(1), 342-366; doi:10.3390/rs5010342
Article

Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data

1,* email, 2email, 1email, 3email, 1email, 1email, 1email and 4email
Received: 1 November 2012; in revised form: 8 January 2013 / Accepted: 10 January 2013 / Published: 17 January 2013
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Remote sensing of the Earth’s energy budget, particularly with instruments flown on geostationary satellites, allows for near-real-time evaluation of cloud and surface radiation properties. The persistence and coverage of geostationary remote sensing instruments grant the frequent retrieval of near-instantaneous quasi-global skin temperature. Among other cloud and clear-sky retrieval parameters, NASA Langley provides a non-polar, high-resolution land and ocean skin temperature dataset for atmospheric modelers by applying an inverted correlated k-distribution method to clear-pixel values of top-of-atmosphere infrared temperature. The present paper shows that this method yields clear-sky skin temperature values that are, for the most part, within 2 K of measurements from ground-site instruments, like the Southern Great Plains Atmospheric Radiation Measurement (ARM) Infrared Thermometer and the National Climatic Data Center Apogee Precision Infrared Thermocouple Sensor. The level of accuracy relative to the ARM site is comparable to that of the Moderate-resolution Imaging Spectroradiometer (MODIS) with the benefit of an increased number of daily measurements without added bias or increased error. Additionally, matched comparisons of the high-resolution skin temperature product with MODIS land surface temperature reveal a level of accuracy well within 1 K for both day and night. This confidence will help in characterizing the diurnal and seasonal biases and root-mean-square differences between the retrievals and modeled values from the NASA Goddard Earth Observing System Version 5 (GEOS-5) in preparation for assimilation of the retrievals into GEOS-5. Modelers should find the immediate availability and broad coverage of these skin temperature observations valuable, which can lead to improved forecasting and more advanced global climate models.
Keywords: skin temperature; surface temperature; infrared; quasi-global; GOES; ARM; NCDC; MODIS; GEOS-5
PDF Full-text Download PDF Full-Text [5915 KB, uploaded 19 June 2014 00:44 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Scarino, B.; Minnis, P.; Palikonda, R.; Reichle, R.H.; Morstad, D.; Yost, C.; Shan, B.; Liu, Q. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data. Remote Sens. 2013, 5, 342-366.

AMA Style

Scarino B, Minnis P, Palikonda R, Reichle RH, Morstad D, Yost C, Shan B, Liu Q. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data. Remote Sensing. 2013; 5(1):342-366.

Chicago/Turabian Style

Scarino, Benjamin; Minnis, Patrick; Palikonda, Rabindra; Reichle, Rolf H.; Morstad, Daniel; Yost, Christopher; Shan, Baojuan; Liu, Qing. 2013. "Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data." Remote Sens. 5, no. 1: 342-366.

Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert