Remote Sens. 2012, 4(12), 3877-3891; doi:10.3390/rs4123877
Article

Implications of Classification of Methodological Decisions in Flooding Analysis from Hurricane Katrina

email and * email
Received: 9 October 2012; in revised form: 1 December 2012 / Accepted: 3 December 2012 / Published: 5 December 2012
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Recent climatic patterns indicate that extreme weather events will increase in frequency and magnitude. Remote sensing offers unique advantages for large-scale monitoring. In this research, Landsat 5 remotely sensed imagery was used to assess flooding caused by Hurricane Katrina, one of the worst natural disasters in the US over the past decades. The objective of our work is to assess whether decisions associated with the classification process, such as location of reference data and algorithm choice, affected flooding results and subsequent analysis using census data. Maximum Likelihood (ML) and Back Propagation Neural Network (NN) were the tested algorithms, the former reflecting a simple and popular classifier, and the latter an advanced but complex method. Flooding estimations were almost identical within the reference sample area, 124.4 km2 for the ML classifier and 123.7 km2 for the NN classifier. However, large discrepancies were found outside the reference sample area with the ML predicting 462.5 km2 and the NN identifying 797.2 km2 as flooded, almost twice the amount. Further investigation took place to evaluate the influence of the classification method to a social study, namely the racial characteristics of flooded areas. Using Census 2000 data, our study area was segmented in census tracts. Results indicated a strong positive correlation between concentration of African Americans and proportional residential flooding. Pairwise T-Tests also verified that flooding among different African American concentrations was statistically different. There were no significant differences between the ML and NN methods in the results interpretation, which is mostly attributed to the significant geographic overlap between reference sample area and the examined census tracts. This study suggests that emergency responders should exercise significant caution in their decision making when using classification products from undersampled geographic areas in terms of classification reference data.
Keywords: classification process; change detection; flooding assessment; Hurricane Katrina; racial distribution
PDF Full-text Download PDF Full-Text [4964 KB, uploaded 19 June 2014 00:41 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Khatami, R.; Mountrakis, G. Implications of Classification of Methodological Decisions in Flooding Analysis from Hurricane Katrina. Remote Sens. 2012, 4, 3877-3891.

AMA Style

Khatami R, Mountrakis G. Implications of Classification of Methodological Decisions in Flooding Analysis from Hurricane Katrina. Remote Sensing. 2012; 4(12):3877-3891.

Chicago/Turabian Style

Khatami, Reza; Mountrakis, Giorgos. 2012. "Implications of Classification of Methodological Decisions in Flooding Analysis from Hurricane Katrina." Remote Sens. 4, no. 12: 3877-3891.

Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert