Remote Sens. 2011, 3(11), 2321-2345; doi:10.3390/rs3112321
Review

Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis

1,2,* email, 1email, 1email and 2email
Received: 15 August 2011; in revised form: 7 October 2011 / Accepted: 20 October 2011 / Published: 27 October 2011
(This article belongs to the Special Issue Remote Sensing in Public Health)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: The benefits of terrestrial remote sensing in the environmental sciences are clear across a range of applications, and increasingly remote sensing analyses are being integrated into public health research. This integration has largely been in two areas: first, through the inclusion of continuous remote sensing products such as normalized difference vegetation index (NDVI) or moisture indices to answer large-area questions associated with the epidemiology of vector-borne diseases or other health exposures; and second, through image classification to map discrete landscape patches that provide habitat to disease-vectors or that promote poor health. In this second arena, new improvements in object-based image analysis (or “OBIA”) can provide advantages for public health research. Rather than classifying each pixel based on its spectral content alone, the OBIA approach first segments an image into objects, or segments, based on spatially connected pixels with similar spectral properties, and then these objects are classified based on their spectral, spatial and contextual attributes as well as by their interrelations across scales. The approach can lead to increases in classification accuracy, and it can also develop multi-scale topologies between objects that can be utilized to help understand human-disease-health systems. This paper provides a brief review of what has been done in the public health literature with continuous and discrete mapping, and then highlights the key concepts in OBIA that could be more of use to public health researchers interested in integrating remote sensing into their work.
Keywords: object-based image analysis (OBIA); vector-borne diseases; health exposures; image classification; fine spatial resolution imagery; topology
PDF Full-text Download PDF Full-Text [512 KB, uploaded 19 June 2014 00:09 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Kelly, M.; Blanchard, S.D.; Kersten, E.; Koy, K. Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis. Remote Sens. 2011, 3, 2321-2345.

AMA Style

Kelly M, Blanchard SD, Kersten E, Koy K. Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis. Remote Sensing. 2011; 3(11):2321-2345.

Chicago/Turabian Style

Kelly, Maggi; Blanchard, Samuel D.; Kersten, Ellen; Koy, Kevin. 2011. "Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis." Remote Sens. 3, no. 11: 2321-2345.


Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert