Next Article in Journal
The Role of the Effective Cloud Albedo for Climate Monitoring and Analysis
Previous Article in Journal
Machine Learning Comparison between WorldView-2 and QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification
Remote Sens. 2011, 3(10), 2283-2304; doi:10.3390/rs3102283
Article

Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery

1,2,* , 1
 and
1
Received: 20 August 2011 / Revised: 3 October 2011 / Accepted: 9 October 2011 / Published: 21 October 2011
Download PDF [1494 KB, uploaded 19 June 2014]

Abstract

Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is transforming ecosystems on three continents and a number of neotropical islands by introducing a grass-fire cycle. However, previous attempts at discriminating P. ciliare in North America using multi-spectral imagery have been unsuccessful. In this paper, we integrate field measurements of hyperspectral plant species signatures and canopy cover with multi-temporal spectral analysis to identify opportunities for detection using moderate-resolution multi-spectral imagery. By applying these results to Landsat TM imagery, we show that multi-spectral discrimination of P. ciliare in heterogeneous mixed desert scrub is feasible, but only at high abundance levels that may have limited value to land managers seeking to control invasion. Much higher discriminability is possible with hyperspectral shortwave infrared imagery because of differences in non-photosynthetic vegetation in uninvaded and invaded landscapes during dormant seasons but these spectra are unavailable in multispectral sensors. Therefore, we recommend hyperspectral imagery for distinguishing invasive grass-dominated landscapes from uninvaded desert scrub.
Keywords: Pennisetum ciliare; phenology; hyperspectral; NDVI; spectral mixture analysis; cellulose absorption; buffelgrass; Cenchrus ciliaris Pennisetum ciliare; phenology; hyperspectral; NDVI; spectral mixture analysis; cellulose absorption; buffelgrass; Cenchrus ciliaris
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Olsson, A.D.; van Leeuwen, W.J.; Marsh, S.E. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery. Remote Sens. 2011, 3, 2283-2304.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert