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Abstract: The objectives of this research were to: (i) develop hyperspectral narrow-band 

models to determine soil variables such as organic matter content (OM), sum of cations 

(SC = Ca + Mg + K), aluminum saturation (m%), cations saturation (V%), cations 

exchangeable capacity (CEC), silt, sand and clay content using visible-near infrared  

(Vis-NIR) diffuse reflectance spectra; (ii) compare the variations of the chemical and the 

spectroradiometric soil analysis (Vis-NIR). The study area is located in São Paulo State, 

Brazil. The soils were sampled over an area of 473 ha divided into grids (100 × 100 m) 

with a total of 948 soil samples georeferenced. The laboratory RS data were obtained using 

an IRIS (Infrared Intelligent Spectroradiometer) sensor (400–2,500 nm) with a 2-nm 

spectral resolution between 450 and 1,000 nm and 4-nm between 1,000 and 2,500 nm. 

Satellite reflectance values were sampled
 
from corrected Landsat Thematic Mapper (TM) 

images. Each pixel in the image was evaluated as its vegetation index, color compositions 

and soil line concepts regarding certain locations
 
of the field in the image. Chemical and 

physical analysis (organic matter content, sand, silt, clay, sum of cations, cations 

saturation, aluminum saturation and cations exchange capacity) were performed in the 

laboratory. Statistical
 

analysis and multiple regression equations for soil attribute
 

predictions using radiometric data were developed. Laboratory
 
data used 22 bands and 13 

―Reflectance Inflexion Differences,
 
RID‖ from different wavelength intervals of the optical 

spectrum.
 
However, for TM-Landsat six bands were used in analysis (1, 2, 3, 4, 5, and 7). 
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Estimations
 
of some tropical soil attributes were possible using laboratory

 
spectral analysis. 

Laboratory spectral reflectance (SR) presented high correlations with
 
traditional laboratory 

analyses for the soil
 
attributes such as clay (R

2
 = 0.84, RMSE = 3.75) and sand (R

2
 = 0.85, 

RMSE = 3.74). The most sensitive narrow-bands in modeling (using 474 observations) 

these attributes were B8 (1,350–1,417 nm), B10 (1,417–1,449 nm), B11 (1,449–1,793 nm), 

B15 (1,927–2,102 nm), B16 (2,101–2,139 nm), and B17 (2,139–2,206 nm);  

B7 (975–1,350 nm), B10, B11, B16, B19 (2,206–2,258 nm) and B21 (2,258–2,389 nm) for 

clay and sand, respectively. The bands selected to model sand and clay, by orbital data, 

were 3, 5 and 7 of TM-Landsat-5 and 2, 5 and 7 sand and clay, respectively. The use of soil
 

analysis methodology by ground remote sensing
 
constitutes an alternative to traditional 

routine laboratory
 
analysis.
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1. Introduction 

Soil chemical properties are neither static nor homogeneous in space and time. Acquiring spatial 

soil variability analytically in the laboratory is time- and cost-intensive, which is especially true for 

large-scale applications with a necessarily high number of soil samples [1,2]. Its high costs has been 

hindered the introduction of precision agriculture in several parts of the world [3]. Precision farming 

needs the identification of even short- or medium-term changes in the nutrient status of the soils. 

Wetterlind et al. [4] proposed successfully the use of near infrared (NIR) spectroscopy to improve soil 

mapping at the farm scale. Finally, the development of actual physico-chemical soil maps can be 

identified as one major limitation for continuous soil monitoring at farm level [5]. Also, large amounts 

of chemical residues are produced with the conventional analysis. In a recent publication,  

Cantarela et al. [6] demonstrated that routine soil analysis, determined by different laboratories, may 

have its varied, while using the same methodology. 

Visible/near-infrared diffuse reflectance spectroscopy (VNIRS) has proven to be a promising 

technique for the investigation of various soil properties. Compared to conventional analytical 

methods, VNIRS is faster, cheaper and non-destructive, requires less sample preparation, with less or 

no chemical reagents, is highly adaptable to automated and in situ measurements, and has the potential 

to analyze various soil properties simultaneously [7,8,9]. 

Soil attributes have close physical relationships with the reflected energy, as demonstrated in the 

last decades [9-15]. The bidirectional reflectance of soils is affected in a complex manner by the inherent 

spectral characteristics of the current mineral components, the organic matter, and the moisture  

contents [16]. An overview of factors influencing soil reflectance is given by Ben Dor et al. [17]. These 

results lead us to question as others spectral sensing researchers [11]: ―Can remote sensing substitute 

the soil analysis?‖ This question was raised based on years of studies in spectral information about soil 

quantification. Afterwards, this was also mentioned by [18,19], for whom some soil attributes analysis 

could be substituted. But, until then, laboratory analysis has been considered as our ―real‖ truth. With 
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the paper of Cantarela et al. [6] came the question: ―is this the real truth?‖ No doubt that this is the 

most important reference for us, but could the VNIRS technology be inserted as an assistance to 

traditional analysis? There are few manuscripts that compared the variations of the traditional soil 

analysis with the results obtained by sensor methods [8,19-21]. Usually, the papers compare directly 

the laboratory analysis with spectral sensing, but do not inform the variation of the data.  

In this context, the goal of this research is to develop hyperspectral narrow-band models to 

determine soil variables such as organic matter content (OM), sum of cations (SC = Ca + Mg + K), 

aluminum saturation (m%), cations saturation (V%), cations exchangeable capacity (CEC), silt, sand 

and clay content. Prediction models of soil properties have shown a high potential [22-24]. Since 

reflected energy has a strong physical relation with several soil attributes (e.g., clay, sand), we expect 

that spectral information present an accurate model that allow quantifying these soil attributes. 

Furthermore, it were compared the variations of the chemical soil analysis and the spectroradiometric 

soil analysis. 

2. Study Area and Soil Analysis 

2.1. Description of the Study Area and Soil Sampling  

The area was located in Barra Bonita Country, southeast of São Paulo, Brazil and covers an area of 

473 ha. Regular 100 × 100 m grids were used to divide the field. All areas sampled were bare soil. In a 

total of 948 soil samples were georeferenced using the differential global positioning system. The 

collected soil samples were sent for chemical and physical analysis in the laboratory. The texture 

groups of the soils were defined according to Empresa Brasileira de Pesquisa Agropecuária [25]. The 

contents of Ca, Mg, K, and the sum of the bases (SC) were determined according to Raij et al. [26], 

Organic matter, total and effective acidity, pH in water and in KCl, CEC, the values of base saturation 

(V%) and Al (m%) were determined according to EMBRAPA [27]. 

2.2. Methodology Procedure 

The experiment was divided in three phases: (a) collection of soil samples from the field; collection 

of the spectral data of these samples using a laboratory sensor; collection of spectral data from satellite 

sensors; determination of soil attributes using laboratory analysis; (b) determination of statistical 

models that correlated spectral data with each soil attribute from both, laboratory and satellite sensors; 

and (c) validation of the models obtained. 

3. Spectral Data Acquisition 

3.1. Laboratory Spectral Data Acquisition  

Laboratory spectral data were obtained in a controlled environment using the Infra-Red Intelligent 

Spectroradiometer (IRIS) sensor [28], with a spectral resolution of 2 nm (from 350 to 1,000 nm) and 4 

nm (from 1,000 to 2,500 nm), which included visible and infrared wavelengths. Therefore, soil 

samples were dried in an oven at 45 °C for 24 h, according to Henderson et al. [29], and were placed 

on 9 cm diameter petri plates. Three replicate scans of each soil sample were taken to increase the soil 
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surface scanned by the sensor and the mean spectral curve was used for analysis. The scanning 

geometry was set in a perpendicular positioning with relation to the sample according to Demattê and 

Garcia [30] and Demattê et al. [31]. The experimental setting allowed to measure a bidirectional 

reflectance factor, as defined by [32] as the ratio between the sample’s reflected spectral flux and a 

standard spectral flux (a BaSO4 plate under the same conditions). The absolute white reference used 

for calibration for the instrument was a Spectralon® white reference plate. 

3.2. Satellite Spectral Data Acquisition  

ATM-Landsat 5 image, bands 1, 2, 3, 4, 5, and 7, was used to obtain satellite level data. The Spring 

program developed by the Brazilian National Space Research Institute, INPE [33] was utilized to set 

up and manipulate the database. Spring is the newest generation of geoprocessing programs conceived 

for object oriented programming with multiple functions and algorithms for processing georeferenced 

databases [34]. Digital number values (DN) obtained from the TM Landsat images were transformed 

into spectral reflectance (SR) values and properly adjusted for atmospheric effects [18,35]. Thus the 

image was corrected, band-to-band, where
 
the atmospheric effects were eliminated, and then digital 

numbers
 
were converted into ―real‖ SR values [36]. For this purpose, digital

 
number values were first 

normalized to ―top of atmosphere‖ apparent
 
reflectance and then corrected for Rayleigh scattering and 

ozone
 
absorption by using the 5S (Satellite Signal Simulation within the Solar Spectrum) radiate 

transfer code simulation
 
[37,38] described in detail by [36]. The DN refers to the same point of soil 

sampling in the field that has been georeferenced and was extracted by
 

a ―pixel reading‖  

algorithm [39]. Geometric correction was necessary to adjust the real image position. Hence, 

planialtimetric maps (scale 1:10,000), were used. In addition, points obtained in the field with the 

Global Positioning System (GPS) with submeter accuracy were used. In order to maintain the pixel 

value as close as possible to its original value, an interpolation process, called nearest neighbor  

method [40] was performed, correcting only scale distortions, displacement or rotation between the 

image and the terrestrial projection.  

Afterwards each pixel was evaluated as the bare soil significance [41,42]. The methodology to 

identify bare soils in the image consists of vegetation indices, soil line concepts, image
 
composition 

and soil genesis information regarding certain locations
 
of the field in the image [41]. The pixel is only 

collected and considered as bare soil, if all concepts are accepted, i.e., when all indices demonstrated 

bare
 
soil. The Normalized Difference

 
Vegetation Index (NDVI) refers to the band ratio between red

 
(R) 

and the near-infrared reflectance [43]. In the
 
Spring program, the NDVI index was calculated by the 

equation
 
C = G [(A − B)/(A + B)] + O, where A refers to near infrared

 
band; B = red band; G = image 

gain, and O = image offset. Moreover,
 
to increase SR contrast between vegetation and soil, NDVI was

 

partially compensated for illumination, surface declivity, and
 
geometry [44]. Some vegetation indexes

 

are denominated of the ―soil line‖. The soil line is a linear
 
relationship between the near infrared (NIR) 

and R reflectance
 
of bare soil as characterized by slope and intercept parameters

 
[45]. The data can be 

observed on a bidimensional
 
graph formed by both, visible and NIR bands [46]. Thus,

 
vegetation present 

in a studied image will be, theoretically,
 
proportional to the Euclidean orthogonal distance on this ―soil

 

line‖. Reciprocally, Euclidean distance, based on vegetation
 
index, has a complementary orthogonal 

index, which relates to
 
soil optical properties with less vegetation [47]. Garey and Sabbagh [48] describe 
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that remotely sensed
 
estimations of soil surface properties can lead to improved

 
representation of 

spatial heterogeneity. The methodology used in this paper evaluates the pixel as its vegetation index, 

color compositions and soil line concepts [18] regarding certain locations
 
of the field in the image. 

4. Statistical Analysis 

An automated statistical system was used to identify the best bands for each model [49]. In total of 

948 samples obtained from the surface and under-surface layer, 474 were randomly separated 

regardless of the sampling layer for generating the models (Figure 1). The remaining 474 samples were 

used to test the model (validation phase). The data was submitted to correlation analysis between soil 

attributes and their respective SR characteristics
 
(predictor variables), using the Statistical Analysis 

System software [49].  

Figure 1. Representation of the study area: 474 sampling points and 948 soil samples 

collected with a regular 100 × 100 m grid.  

 

*Green, yellow and orange represent the selected points used to generate the chemical and physical models of soil 

attributes. 

The soil variables used in the correlation with spectral characteristics were: organic matter content 

(OM), sand, silt, clay, sum of cations (SC = Ca + Mg + K), cations saturation (V% = [SC/CEC]*100), 

aluminum saturation (m%) and cation exchange capacity (CEC). The laboratory sensor presented a 

larger number of bands, allowing a higher radiometric resolution. Thus, to make the statistics easier, 

the following 22 specific wavelengths
 
from laboratory sensor were selected according to Nanni and 



Remote Sensing 2010, 2                  

          

2003 

Demattê [50]: B1: 450–481, B2: 481, B3: 481–596, B4: 596–710, B5: 710–814, B6: 814–975,  

B7: 975–1,350, B8: 1,350–1,417, B9: 1,417, B10: 1,417–1,449, B11: 1,449–1,793, B12: 1,793–1,831, 

B13: 1,865–1,927, B14: 1,927, B15: 1,927–2,102, B16: 2,101–2,139, B17: 2,139–2,206, B18: 2,206, 

B19: 2,206–2,258, B20: 2,258, B21: 2,258–2,389, B22: 2,389–2,498 nm. The bands selection was 

based on the empirical observation
 
of the analyzed spectrum, which showed SR curve inflections,

 

convex and concave portions, and variation of reflectance intensity
 
in all spectrum; the literature 

observations that depicted the
 
correct wavelengths that have relationships with soil attributes

 
[10,30,51]

 

and the wavelengths
 
characterized by a strong inflection, such as iron oxides (481

 
nm), water and OH 

groups (1,417 and 1,927 nm), kaolinite (2,206
 
nm), and gibbsite (2,265 nm). Moreover, based on the 

difference between reflectance value at the highest and lowest points of inflection (or Amplitude of 

spectral data at this range), 13 reflectance inflection difference were too selected (demonstrating the 

height of the curve between peak and valley) [42]. For ATM-Landsat six bands were used in analysis. 

Initially, predictive variables for laboratory and orbital data were selected using the SAS program. This 

procedure was used to determine which variables from the 22 bands (B) (laboratory sensor), presented 

the higher or lower potential for the models’ development [18].  

Through the use of SAS regression function, correlations between radiometric data and soil 

attributes were determined. To prevent overlapping of two or more variables, independent variables or 

radiometric characteristics
 
were evaluated for co-linearity, avoiding biases in the analysis. Then, 

multiple linear regression equations were developed for each attribute, using the SAS multivariate 

analysis component (STEPWISE). After that, these equations were tested with the reflectance data of 

remaining samples (474) that were not used to build the models. Thus, it was possible to produce a 

database with soil attribute values determined in the laboratory by traditional methods (DV) and values 

estimated by radiometry (EV). DV and EV were compared by Tukey’s test (P < 0.05).  

It was created in 1984 a soil proficiency test in Brazil to encourage the uniform use of the methods 

routinely used for soil analysis in this country, improving the analytical quality of the results. The 

proficiency test has been running now for more than 20 years and comprises 89 public and private 

laboratories. The assessment of the performance of routine laboratory analysis in Brazil was presented 

in 2000 and published afterwards by Cantarela et al. [6]. One of the objectives was the standardization 

of the analysis results. Samples from the same soils were sent every year to the laboratories that are 

part of the program. The average (x), standard deviation (s), coefficient of variation (CV), minimum 

and maximum values for each routinely analyzed soil attribute were obtained after a statistical 

treatment. Thus, a laboratory was considered in the standard when its results lied within the minimum 

and maximum values. Based on these results, a tolerance interval (minimum and maximum values) 

was generated for DV. When EV presented values within this tolerance interval, the value was 

considered satisfactory. For example, for the sample identified with the number 454, the sand attribute 

presented a value of 530 g kg
−1

 (DV). If we apply the ±20% criteria [6], the minimum and maximum 

values of 424 g kg
−1

 and 636 g kg
−1

, respectively, are acceptable. As the EV (determined using 

equations based on reflectance) was 529 g kg
−1

, it can be considered in ―agreement‖ or ―within the 

interval‖ established by laboratories. Since no basic rule for tolerance variation of soil samples exists, 

other intervals were established for comparison and discussion. The compared EV to DV, were 

classified as follows: 0–20%, very good; 21–30%, good; 31–40%, poor and >41%, very poor. DV and 

EV were also correlated for sand, clay, organic matter, SC and CEC attributes. It was determined the 
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quadratic determination coefficient (R
2
) in order to estimate soil attributes by spectral reflectance and 

traditional methods. 

5. Results and Discussion 

5.1. Soil Attributes Based on the Spectral Response Obtained by Sensor in Laboratory 

Equations were established to estimate soil attributes with the SR of the matrix data for soils. The 

equations for m % and CEC presented, respectively, with the largest and smallest number of variables 

between bands and heights (Table 1). The technique of multivariate analysis allowed the selection of 

the bands which had better correlations with each attribute, agreeing with Huete & Escadafal [52]. 

The t-test was used as a preliminary result to compare the DV (determined values) of soil attribute 

obtained by soil chemical analysis and its EV (estimated values) obtained using the models (Table 1). 

It was found no significant differences between the traditional analysis and that obtained by the sensor 

(Table 2). These results partially differ from those of Nanni & Demattê [50] where the averages 

between DV and EV for sand and OM, showed significant differences. Moreover, the results for clay 

and silt obtained by these authors confirm the good results of this research. 

In order to get better evaluation of the data, a criterion that compares DV and EV punctually was 

used in the 474 samples (Table 3). Each soil sample was evaluated individually. For example, sand 

values: sample number 102 had a determined content of 720 g kg
−1

. Using range interval of confidence 

extracted from Cantarella [6], 20%, we determined a range interval, in which the error would be 

accepted. In case the minimum and maximum acceptable spectral model estimated value would be  

571 g kg
−1

 to 869 g kg
−1

, respectively. The estimated value for the same soil sample, using spectral 

laboratory model was 527 g kg
−1

. In this case the estimated value was ―below‖ the confidence range 

interval. Thus, table 3 presents the percentage of sample classified. 

This criterion was based on studies carried out with soil samples in routine laboratories according to 

Cantarella et al. [6]. A high determination coefficient (R
2
) was found for sand (84%) and clay (74%), 

i.e., 396 and 351 of the 474 samples tested were within the tolerance variation interval proposed by the 

soil analysis in laboratories. A 52% agreement was observed for silt. However, in practice, silt can be 

determined by subtraction, since sand and clay were adequately estimated, as done in the laboratory 

according to Raij et al. [26]. Similarly to silt, CEC showed an 51% agreement (Table 3). SC, OM, m% 

and V% presented low rates of agreement. 
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Table 1. Multiple regression equations to estimate soil attributes by laboratory sensor using 22 bands and 13 heights (using 474 observations). 

Variables Multiple equations
 

r
2 (2) 

Total sand 409.59806 + (−3346.58558*H3) + (20887*B11) + (−14543*B16) + (−10890*H7) + (-9824.77554*B19) + (−19212*B10) + (13431* H12) 

+ (26675*B21) + (−3035.10462*B7) 

0.8174 

Silt 129.83933 + (−1943.40654*H10) + (−2624.05031*H9) + (1916.57891*H8) + (2353.36975*H5) + (2162.49950*H1) 0.5672 

Clay 376.23728 + (4092.67466*H3) + (10972*H7) + (1409.95843*H2) + (−25070*B11) + (23006*B16) + (−23085*H11) + (30702*B10) + 

(−19095*B17) + (8651.36527*H12) + (−2273.14097*H1) + (−4697.25743*B15) + (−6041.71261*B8) 

0.8570 

Organic 

matter 

29.00804 + (−141.76148*H2) + (−225.82107*H3) + (−517.81987*H13) + (746.61657*B1) + (−476.15447*B3) + (332.27114*H5) 0.2988 

Sum of 

cations 

455.20858 + (−25577*H11) + (23797*H12) + (−3138.20686*H3) + (5295.62046*H1) + (−7983.39289*H5) + (4108.62012*H8) 0.6345 

Bases sat. 79.81023 + (−1016.67292*B1) + (2892.46819*B8) + (−2560.16606*B7) + (−1067.64273*H4) + (3300.62458*H12) + (−919.36419*H10) 

+ (488.23896*H3) + (−1480.00508*H11) 

0.5055 

Aluminum 

sat. 
−22.14932 + (3801.42681*H5) + (−2050.46588*H8) + (2082.39681*B1) + (−6728.15162*B3) + (−4326.51343*B10) + (−699.51724*H3) 

+ (6123.58955*B2) + (1570.79618*H13) + (3540.68221*H1) + (960.41493*H2) + (−995.46185*H12) + (1273.60350*B11)  + 

(2584.29549*B9) 

0.6802
 

CEC 753.20475 + (−32058*H11) + (26746*H12) + (−4921.96650*H3) + (5686.79082*H1) 0.5358 

(2) Significant at p < 0.05; B1 (450–481), B2 (481), B3 (481–596), B4 (596–710), B5 (710–814), B6 (814–975), B7 (975–1350), B8 (1350–1417), B9 (1417), B10 (1417–1449),  

B11 (1449–1793), B12 (1793–1831), B13 (1865–1927), B14 (1927), B15 (1927–2102), B16 (2101–2139), B17 (2139–2206), B18 (2206), B19 (2206–2258), B20 (2258),  

B21 (2258–2389), B22 (2389–2498) in nm; 

Table 2. Comparison of mean (t-test) of soil attributes values determined by traditional analysis and by sensor (models).  

 Sand Silt Clay Organic matter Sum of cations CEC V% m%
 

 ----------------------------------------g kg
−1

----------------------------------- --------mmolc dm
−3

------- ------------%----------- 

DV (1) 701.10a (3) 52.64a 256.33a 13.26a 223.23a 440.82a 45.18a 22.76a 

EV (2) 691.01a  52.78a 244.56a 13.35a 212.50a 428.70a 45.15a 23.70a 

(1) Determined values of soil attribute obtained by soil chemical analysis;(2) Estimated values obtained by multiple regressions using 22 bands and 13 heights, laboratory radiometric, 

IRIS sensor; (3) t Student test, 1 % significance, averages with the same letters in column do not differ. 
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Table 3. Number of samples that used multiple regression equations to develop spectral 

models to determine soil attributes contents. 

 Sand Silt Clay OM 
(c) 

Range 
(a)

 20.0
(a) 

36.8
(a)

 27.8
(a)

 20.15
(a)

 

 Samples 
(b) 

% Samples
 

% Samples
 

% Samples
 

% 

Below 
 

17 4 67 14 55 12 120 25 

In 
 

396 84 245 52 351 74 163 34 

Above 
 

61 13 162 34 68 14 191 40 

 
 

 
 

 
 

 
 

 

 SC
 (d) 

V 
(e) 

m 
(f) 

CEC 
(g) 

Range 
(a)

 28.34
(a)

 4.08
(a)

 31.80
(a)

 24.54
(a)

 

 Samples 
(b) 

% Samples
 

% Samples
 

% Samples
 

% 

Below 115 24 182 38 143 30 91 19 

In 178 38 49 10 137 29 241 51 

Above 181 38 243 51 194 41 142 30 

(a) Range interval of confidence, extracted from the IAC Laboratory Quality Control Programs Center of Soil Analysis [33]; 

(b) Number of samples (from total of 474) that were ―below‖, ―in‖ and ―above‖ the proposed ranges; (c) Organic Matter; (d) 

Sum of Cation; (e) Base saturation; (f) Aluminum saturation; (g) Cation exchange capacity. 

These results demonstrate that there is greater potential for estimating physical parameters such as 

sand and clay than for chemical parameters, as V%. There are variations between laboratory soil 

analyses [53]. To make feasible comparison of these data, the present work suggests using fixed 

variation intervals as presented in Table 3. For example, the largest number of EV samples in the  

0–20% range, had the best multiple regression equation. The results obtained with the sand equation 

identified 83.5% of the samples in this range, followed by clay with 59.8% and CEC with 41%. The 

other results have shown a very low percentage (Table 4).  

Table 4. Percentage of samples, results in the tolerance range, comparison between relative 

values 
(a)

 of laboratory traditional data (real value) and values obtained by the laboratory 

spectral models. 

(a) Suggested by present work using the criterion: Relative Value = {(DV-EV) / DV)} * 100 where: DV: determined in 

laboratory; EV: estimated by laboratory spectral data; (b) Organic Matter; (c) Sum of Cations; (d) Cations exchange capacity; 

(e) Base saturation; (f) Aluminum saturation. 

For the 21–30% range, considered to be good, the highest agreement was observed for CEC 

(21.4%), and in the 31–40% range, poor, OM was identified with 13%.  Agreement for the 0–40% 

tolerance interval were 89.3% for sand, 87.3% for clay, 75.1% for CEC, 67.7% for V%, and 63.6% for 

 Sand Silt Clay OM
 (b) 

SC 
(c)) 

CEC 
(d) 

V 
(e) 

m 
(f)

 

Tolerance Range 
(a) 

------------------------------------------------------ % -------------------------------------- 

0–20% (very good) 83.5 29.2 59.8 35.5 25.4 41.2 38.5 24.6 

21–30% (good) 4.7 14.2 18.4 14.6 15.6 21.4 17.3 13.0 

31–40% (poor) 1.1 10.6 9.1 13.5 9.7 12.5 11.8 11.6 

> 41% (very poor) 10.8 46.1 12.7 36.4 49.3 24.9 32.3 50.7 

Total (474 sample) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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OM. The results above the 40% interval (very poor) were representative for some attributes, e.g., m% 

with 50.7%, SC with 49.3%, silt with 46.1%. The equations for these attributes probably generated 

doubtful results and, thus, their use should be avoided. Figure 2 also showed the correlation between 

the DV and EV, based on the multiple regression equations on Table 1. The highest coefficients of 

determination (R
2
) were observed for sand (0.85) and clay (0.84). The R

2
 values of 0.56 for clay and 

0.51 for organic matter were determined by Ben-Dor & Banin [54], with the later value being higher 

than that obtained in the present study (0.42) (Figure 2). 

The coefficients of determination used for SC and CEC were higher than the 0.64 value reported by 

Ben-Dor & Banin [54] for CEC. It is interesting to note that in all cases the data estimated by the 

sensor were above the tolerated variation (Table 3). This finding might be explained by the fact that 

the models used in the present study were empirical, and the concentration of a given soil constituent 

was assumed to be proportional to a linear combination of different reflectance intensities and 

absorption ranges. Similar models have been tested by various authors [23,54,55] for the assessment of 

OM and nutrients. 

The similar EV and DV values indicated good results for the methodology proposed here due 

various factors: use of a sensor with high spectral resolution, a high signal-to-noise ratio, spectral data 

obtained in a constant and controlled environment, and detailed analysis of the soils in the study area. 

Under these conditions, the sensor detects effects of soil attributes that absorb radiant energy at 

discrete energy levels. However, divergent results have been noted between studies. The OM value 

determined in the present study (R
2
 0.42) (Figure 2) was lower than the valued of OM (R

2
 0.79) found 

by [18]. But a similar result was reported by [30], with a low correlation for OM (0.45).  

The determination coefficient of 0.63 for clay was observed by Coleman et al. [56], while Demattê 

and Garcia [30] obtained values above 0.75 for this attribute. Nanni and Demattê [50] reported a R
2
 of 

0.91 for clay, while a value of 0.86 was obtained in the present study. These results can be explained 

by the differences between the methods employed in the various studies. In addition to the use of 

different equipments, the main divergence lies in the selection of the bands used to develop the models 

and the soils data analyzed [52]. Instead of using 22 bands, Demattê et al. [57] used 11 bands to 

evaluate spectral curves of three different soils amended with organic residues derived from the cane 

sugar industry, with the use of FieldSpec sensor. The accuracy of the stepwise analysis was also 

measured by the root mean squared error of prediction (RMSE) (Table 5).  

 

where ŷi represents each predicted value, yi represents each determined value and N the number of 

samples. The low RMSE values confirmed the good results obtained for sand and clay in this work. 

Saeys et al. [58] fixed the R
2 
values between 0.50 and 0.65 indicate the possibility to differ high to low 

concentrations in model. While values of 0.66 to 0.81, of 0.82 to 0.90 and R
2
 values greater than 0.90 

indicate quantitative models to predict soil chemical attributes acceptable, good and excellent, 

respectively. The predictions of soil properties that are considered acceptable can be improve with 

different strategies of calibration [59]. 
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However, even laboratory chemical analysis demonstrates that methodologies are regional as 

described by the Council on Soil Testing and Plant Analysis (1980). These findings should stimulate 

discussions about methodologies.  

Figure 2. Scatter plot of laboratory determined soil values obtained by routine analysis 

(Determined Value (Y)) and estimated values obtained with the spectral regression models 

(Estimated Value (X)). 

 

 

y = 0.809x + 36.30
R² = 0.838

0

150

300

450

600

750

900

0 150 300 450 600 750 900

C
la

y
 L

a
b

o
ra

to
ry

Clay Estimated

y = 0.638x + 139.5
R² = 0.668

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

C
E

C
 L

a
b

o
ra

to
ry

CEC Estimated

y = 0.645x + 72.11
R² = 0.652

0

150

300

450

600

750

900

0 150 300 450 600 750 900

S
C

 L
a
b

o
ra

to
ry

SC Estimated

y = 0.398x + 7.672
R² = 0.416

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

O
M

 L
a
b

o
ra

to
ry

OM Estimated

y = 0.816x + 134.8
R² = 0.846

0

200

400

600

800

1000

0 200 400 600 800 1000

Sand Estimated

S
a
n

d
L

a
b

o
ra

to
y



Remote Sensing 2010, 2                           

 

2009 

Table 5. Validation results of attributes evaluated in soils by multiple linear regression equations. 

Soil variables OM  Sand Clay SC CEC 

R
2
 0.417 0.846 0.839 0.653 0.668 

RMSE 0.245 3.747 3.317 1.098 6.778 

5.1. Estimate of Soil Attributes Based on the Spectral Response Obtained by Orbital Sensor  

It was generated a linear regression equation for each attribute, with 50% of soil samples from the 

area studied, in a total of 227 samples (Table 6). We selected, by statistical procedures, three of the six 

original variables (TM 1, 2, 3, 4, 5 and 7) for sand, silt and clay. It were selected the same bands for 

sand and silt (3, 5 and 7), differing the band 2 instead of 3 for clay (Table 6). Coleman et al. [60] 

obtained multiple regression equations for these same attributes, also with three of six variables, 

however with different bands (sand-2,3 and 7; silt-1,4, and 7; clay- 1,3 and 4). According to these 

authors, the highest coefficient of determination was 0.4 for clay and less than 0.17 for sand and silt. 

These values are lower than those observed in this study with 0.63, 0.61 and 0.54 for sand, clay and 

silt, respectively (Table 6). On the other hand, Nanni [53] found r
2
 = 0.52 for sand with bands 1, 5 and 

7 and, 0.67 for clay with bands 1, 3, 4, 5 and 7. The equations for SC, CEC (band 7) and V% (band 1) 

showed the smallest numbers of variables. OM and m% had 2 variables and low levels of 

determination coefficient (<0.46) (Table 6). These values were similar to those obtained by Nanni [53] 

whom concluded that these equations can generate errors in estimation of attribute. Coleman et al. [60] 

with the paper titled ―Is it possible to quantify soil attributes through sensors installed on space 

platforms?‖ showed data with significant but not consistent values of r
2 

(from 0.1 to 0.4 for sand, silt, 

clay, iron, and organic matter). In this current study these values were better, mainly for sand and clay 

(Table 6).  

Table 6. Multiple regression equations to estimate soil attributes by orbital sensor using 6 

bands (TM Landsat-5). 

Attributes Multiple equations 
(1)

 r
2 (2) 

Total sand 128.57173 + (−14.26920*TM3) + (13.13981*TM5) + (26.11687*TM7) 0.6356 

Silt 205.73234 + (4.47412*TM3) + (−2.51728*TM5) + (−8.37651*TM7) 0.5435 

Clay 699.99540 + (−13.44352*TM7) + (−12.69294*TM5) + (13.03814*TM2) 0.6140 

OM (3) 32.93323 + (1.03425*TM1) + (−1.21937*TM7) 0.41 

SC (4) 794.50072 + (−31.18313*TM7) 0.3466 

V (5) 58.97640 + (−2.19535*TM1) 
0.013 

m (6) −9.25324 + (0.69115*TM4) + (0.27464*TM7) 0.1374 

CEC (7) 1348.94022 + (−50.85760*TM7) 0.4595 

(1) TM1, TM2, TM3, TM4, TM5 e TM7, TM-Landsat-5 Bands; (2) Significant in 0,01 % of probability; (3) organic Matter; (4) 

Sum of cations; (5) Bases saturation; (6) Aluminum saturation; (7) Cation exchange capacity 

Table 7 presents the criterion of punctual comparison between DV and EV as carried out for the 

laboratory data, where the EV were compared with the DV range extracted from [33] for each 

georeferenced sample. Each soil sample was evaluated individually. 
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Table 7. Number of samples that used multiple regression equations spectral models 

(satellite spectral data) to determine soil attribute content. 

 Sand Silt Clay OM 
(c) 

Range 
(a) 

20.00
(a) 

36.80
(a)

 27.83
(a)

 20.15
(a)

 

 Sample 
(b) 

% Sample
 

% Sample
 

% Sample
 

% 

Below 
 

19 8 41 18 44 19 56 25 

In 
 

175 77 108 48 112 49 102 45 

Above 
 

33 15 78 34 71 31 69 30 

 SC 
(d) 

V 
(e) 

m 
(f) 

CEC 
(g) 

Range 28.34
(a)

 4.08
(a)

 31.80
(a)

 24.54
(a)

 

 Sample
 

% Sample
 

% Sample
 

% Sample
 

% 

Below 
 

29 13 75 33 83 37 39 17 

In 
 

113 50 18 8 53 23 120 53 

Above 
 

85 37 134 59 91 40 68 30 

(a) Range interval of confidence, extracted from the IAC Laboratory Quality Control Programs Center of Soil Analysis [33]; 

(b) Number of samples (from total of 474) that were ―below‖, ―in‖ and ―above‖ the proposed ranges; (c) Organic Matter; (d) 

Sum of Cations; (e) Base saturation; (f) Aluminum saturation; (g) Cations exchange capacity. 

The best results were observed for sand with 77% agreement, i.e., 175 of the 227 samples tested 

were within the tolerance interval. CEC, SC and clay showed about 50% agreement, followed by silt 

with 48%. These results can be considered satisfactory, considering that even soil extractions can show 

error [6]. Low rates of agreement were observed for V% and m% (8% and 23%, respectively) (Table 7). 

Nevertheless, it is important to point out that the results suggest that further studies to determine 

elements should be carried out, as also emphasized by [56] and [61].  

For the ranges suggested in the present study (Table 8), the result obtained for sand was 76.7% in 

the 0–20% range (very good), while the other attributes did not exceed 45% of agreement. For the 

interval above 41%, the highest percentages were observed for m%, silt, SC and clay. In the 0–40% 

interval, only m% showed a rate of agreement below 50%, while agreement were 87.2% for sand, 

74.9% for CEC, 74.4% for OM, 73.6% for V%, 69.6% for clay, and 51.6% for silt (Table 8). 

Correlation analysis between DV and EV were also carried out with the orbital data based on equations 

in table 6 (Figure 3). The highest R
2
 were obtained for sand (0.72) and clay (0.71). In the present study 

the regression coefficient for OM (0.35) was much lower than the values observed by [54] (Figure 3), 

with 0.51. These authors [33] found for clay a correlation of 0.56. The coefficients obtained for SC and 

CEC were lower than the 0.64, value reported for CEC by [54]. The coefficients of 0.52 and 0.67 

respectively for the same attributes were determined by Nanni & Demattê [50]. 
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Table 8. Percentage of samples, results in the tolerance range, comparison between relative 

values 
(a)

 of laboratory traditional data (real value) and the values obtained by the satellite 

spectral data models. 

 Sand Silt Clay OM 
(b) 

SC 
(c) 

CEC 
(d) 

V 
(e) 

m 
(f)

 

Tolerance Range 
(a) 

--------------------------------------------- % ---------------------------------------------- 

0 – 20% 76.7 26.0 39.6 44.9 37.4 44.1 40.5 13.6 

21 – 30% 7.9 15.0 13.7 18.1 14.1 17.6 18.9 16.7 

31 – 40% 2.6 10.6 16.3 11.5 9.3 13.2 14.1 10.5 

> 41% 12.8 48.5 30.4 25.6 39.2 25.1 26.4 59.3 

Total (227 sample) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
(a) Suggested by present work using the criterion: Value = {(DV-EV) / DV)} * 100 where: DV: determined in laboratory; 

EV: estimated by laboratory spectral data; (b) Organic Matter; (c) Sum of Cations; (d) Cations exchange capacity; (e) Base 

saturation; (f) Aluminum saturation. 

Figure 3. Scatter plot of laboratory determined soil values obtained by routine analysis 

(Determined Value (Y)) and estimated values obtained with the orbital spectral analysis 

(Estimated Value (X)). 
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The results obtained by the orbital sensor were less consistent than those obtained with the 

spectroradiometric laboratory sensor, in agreement with the findings of Coleman et al. [56,60]. This 

was due to the fact that the laboratory data was acquired in an controlled environment, with 

appropriate geometry and illumination without atmospheric interference, while image data from the 

orbital sensor is subject to many factors which can cause interference such as soil roughness, spectral 

and spatial resolution, low signal-to-noise ratio, atmospheric interference, and variations in the 

observation and illumination angles [61]. The R
2
 value of 0.8 for clay, a value well above those 

observed in the present study, were obtained by [62], using the AVIRIS (JPL/NASA) hyperspectral 

sensor, thus demonstrating the improvement in sensors. These authors also pointed out that all studies 

involving remote sensing data indicate a direction, but the quantification requires field investigations 

in order to correlate the parameters obtained by image manipulation with data obtained in loco, and 

this is in agreement with the results presented in the current study. 

6. Conclusions 

It is possible to determine soil attributes such as clay and sand content and CEC based on reflected 

electromagnetic energy data obtained with a spectroradiometric laboratory sensor, as shown by the 

close relationship between soil attribute values estimated by equations (obtained from spectral data) 

and those determined by routine laboratory analysis. The most sensitive narrow-bands in modeling 

these attributes (using 474 observations) were B8 (1,350–1,417 nm), B10 (1,417–1,449 nm),  

B11 (1,449–1,793 nm), B15 (1,927–2,102 nm), B16 (2,101–2,139 nm) and B17 (2,139–2,206 nm);  

B7 (975–1,350 nm), B10, B11, B16, B19 (2,206–2,258 nm) and B21 (2,258–2,389 nm) for clay and 

sand, respectively. 

There were 84% to 89% agreement obtained for sand content and 74% to 87% for clay between 

traditional laboratory variations and the estimated spectral data. Chemical parameters such as 

aluminum saturation and sum of cations provided significant equations with regressions coefficients R
2
 

of 0.68 and 0.63, respectively. 

The results obtained by orbital sensor were less consistent than those obtained with the 

spectroradiometric laboratory sensor. It were selected for sand and silt (3,5 and 7) the same bands of 

TM-Landsat-5, differing the band 2 instead of 3 for clay.  

The importance of this experiment was to demonstrate that laboratory methodologies should be 

discussed, especially the chemical analysis. The appropriate methodology (laboratory) should be used 

according to the experiment objective and considering its limitations. However, it is clear that it is 

necessary to discuss with the scientific community about the new methodologies that should be 

implemented. The remote sensing method has potential and can be considered as an alternative tool for 

soil evaluation and conventional methods of soil analysis. Especially for physical analysis and when a 

large number of soil analysis are necessary. This information can guide aerial and orbital hyperspectral 

soil evaluation. Moreover, the evolution of this methodology may allow the collection of information 

and assistance in the field in real time, with sensors installed in agricultural implements. 
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