Interannual Monitoring of Cropland in South China from 1991 to 2020 Based on the Combination of Deep Learning and the LandTrendr Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Landsat Imagery and Pre-Processing
2.2.2. Vegetation Indices
2.2.3. Field Survey and Sample Data
2.3. Algorithm for Monitoring Long Time Series of Cropland
2.3.1. Algorithm for Cropland Identification
2.3.2. Algorithm for Long-Time-Series Cropland Correction
2.4. Validation and Accuracy Assessment
3. Results
3.1. Results of Annual Cropland Map Assessment from 1991 to 2020
3.2. Results of Comparison with the Agricultural Statistical Data
3.3. Assessment of Changes in Cropland Area from 1991 to 2020
4. Discussion
4.1. Advantages of Our Algorithms
4.2. Comparison with Different Datasets
4.3. Uncertainty of the Algorithm and Misclassification of the Validation
4.4. Implications and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Song, W. Mapping Abandoned Cropland Using Within-Year Sentinel-2 Time Series. Catena 2023, 223, 106924. [Google Scholar] [CrossRef]
- Abass, K.; Adanu, S.K.; Agyemang, S. Peri-Urbanisation and Loss of Arable Land in Kumasi Metropolis in Three Decades: Evidence from Remote Sensing Image Analysis. Land Use Policy 2018, 72, 470–479. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, L.; Sun, D.; Hu, F. Impacts of Urban Expansion on the Loss and Fragmentation of Cropland in the Major Grain Production Areas of China. Land 2022, 11, 130. [Google Scholar] [CrossRef]
- Gao, R.; Chuai, X.; Ge, J.; Wen, J.; Zhao, R.; Zuo, T. An Integrated Tele-Coupling Analysis for Requisition–Compensation Balance and Its Influence on Carbon Storage in China. Land Use Policy 2022, 116, 106057. [Google Scholar] [CrossRef]
- Zheng, Q.; Siman, K.; Zeng, Y.; Teo, H.C.; Sarira, T.V.; Sreekar, R.; Koh, L.P. Future Land-Use Competition Constrains Natural Climate Solutions. Sci. Total Environ. 2022, 838, 156409. [Google Scholar] [CrossRef]
- Ridoutt, B.; Navarro Garcia, J. Cropland Footprints from the Perspective of Productive Land Scarcity, Malnutrition-Related Health Impacts and Biodiversity Loss. J. Clean Prod. 2020, 260, 121150. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Zhao, F.R.; Cai, X.; Zhao, J.; Lu, H.; Gong, P. Tracking Annual Cropland Changes from 1984 to 2016 Using Time-Series Landsat Images with a Change-Detection and Post-Classification Approach: Experiments from Three Sites in Africa. Remote Sens. Environ. 2018, 218, 13–31. [Google Scholar] [CrossRef]
- Leroux, L.; Jolivot, A.; Bégué, A.; Seen, D.; Zoungrana, B. How Reliable Is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes? Remote Sens. 2014, 6, 8541–8564. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, D.; Victoria, D.; Dutra, L. Mapping Fractional Cropland Distribution in Mato Grosso, Brazil Using Time Series MODIS Enhanced Vegetation Index and Landsat Thematic Mapper Data. Remote Sens. 2015, 8, 22. [Google Scholar] [CrossRef]
- Wambugu, N.; Chen, Y.; Xiao, Z.; Wei, M.; Aminu Bello, S.; Marcato Junior, J.; Li, J. A Hybrid Deep Convolutional Neural Network for Accurate Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102515. [Google Scholar] [CrossRef]
- Xie, D.; Xu, H.; Xiong, X.; Liu, M.; Hu, H.; Xiong, M.; Liu, L. Cropland Extraction in Southern China from Very High-Resolution Images Based on Deep Learning. Remote Sens. 2023, 15, 2231. [Google Scholar] [CrossRef]
- Wu, S.; Su, Y.; Lu, X.; Xu, H.; Kang, S.; Zhang, B.; Hu, Y.; Liu, L. Extraction and Mapping of Cropland Parcels in Typical Regions of Southern China Using Unmanned Aerial Vehicle Multispectral Images and Deep Learning. Drones 2023, 7, 285. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A Generalized Approach Based on Convolutional Neural Networks for Large Area Cropland Mapping at Very High Resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Yin, H.; Brandão, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring Cropland Abandonment with Landsat Time Series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Cai, Z.; Zhao, J.; Peng, D.; Li, C.; Lu, H.; Yu, C.; Gong, P. Exploring Intra-Annual Variation in Cropland Classification Accuracy Using Monthly, Seasonal, and Yearly Sample Set. Int. J. Remote Sens. 2019, 40, 8748–8763. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Z.; Zuo, L.; Sun, F.; Pan, T.; Li, J.; Zhao, X.; Wang, X. The Detecting of Irrigated Croplands Changes in 1987–2015 in Zhangjiakou. IEEE Access 2021, 9, 96076–96091. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.; Yang, N.; Wang, K.; Moore, N.; Shen, Z. Review of Shadow Detection and De-Shadowing Methods in Remote Sensing. Chin. Geogr. Sci. 2013, 23, 403–420. [Google Scholar] [CrossRef]
- Tang, Y.; Qiu, F.; Jing, L.; Shi, F.; Li, X. Integrating Spectral Variability and Spatial Distribution for Object-Based Image Analysis Using Curve Matching Approaches. ISPRS J. Photogramm. Remote Sens. 2020, 169, 320–336. [Google Scholar] [CrossRef]
- Klouček, T.; Moravec, D.; Komárek, J.; Lagner, O.; Štych, P. Selecting Appropriate Variables for Detecting Grassland to Cropland Changes Using High Resolution Satellite Data. PeerJ. 2018, 6, e5487. [Google Scholar] [CrossRef]
- Song, M.; Zhong, Y.; Ma, A.; Xu, X.; Zhang, L. A Joint Spectral Unmixing and Subpixel Mapping Framework Based on Multiobjective Optimization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Kaur, S.; Bansal, R.K.; Mittal, M.; Goyal, L.M.; Kaur, I.; Verma, A.; Son, L.H. Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images. J. Indian Soc. Remote Sens. 2019, 47, 427–437. [Google Scholar] [CrossRef]
- Chen, P.; Wang, S.; Liu, Y.; Wang, Y.; Li, Z.; Wang, Y.; Zhang, H.; Zhang, Y. Spatio-Temporal Patterns of Oasis Dynamics in China’s Drylands between 1987 and 2017. Environ. Res. Lett. 2022, 17, 064044. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef]
- Wehmann, A.; Liu, D. A Spatial–Temporal Contextual Markovian Kernel Method for Multi-Temporal Land Cover Mapping. ISPRS J. Photogramm. Remote Sens. 2015, 107, 77–89. [Google Scholar] [CrossRef]
- Nguyen, L.; Joshi, D.; Henebry, G. Improved Change Detection with Trajectory-Based Approach: Application to Quantify Cropland Expansion in South Dakota. Land 2019, 8, 57. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Liu, L.; Kang, S.; Xiong, X.; Qin, Y.; Wang, J.; Liu, Z.; Xiao, X. Cropping Intensity Map of China with 10 m Spatial Resolution from Analyses of Time-Series Landsat-7/8 and Sentinel-2 Images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103504. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y. Land Use/Cover Change from 2001 to 2010 and Its Socioeconomic Determinants in Guangdong Province, a Rapid Urbanization Area of China. Tarım Bilim. Derg. 2016, 22, 275–294. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a Strong Future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat Sensor Performance: History and Current Status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Shuai, G.; Basso, B. Subfield Maize Yield Prediction Improves When In-Season Crop Water Deficit Is Included in Remote Sensing Imagery-Based Models. Remote Sens. Environ. 2022, 272, 112938. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating Satellite-Derived Climatic and Vegetation Indices to Predict Smallholder Maize Yield Using Deep Learning. Agric. Meteorol. 2021, 311, 108666. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC); Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Safarov, F.; Temurbek, K.; Jamoljon, D.; Temur, O.; Chedjou, J.C.; Abdusalomov, A.B.; Cho, Y.-I. Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture. Sensors 2022, 22, 9784. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Tian, J.; Wang, Y.; Zeng, T. Land Cover Extraction in the Typical Black Soil Region of Northeast China Using High-Resolution Remote Sensing Imagery. Land 2023, 12, 1566. [Google Scholar] [CrossRef]
- Zhang, P.; Ke, Y.; Zhang, Z.; Wang, M.; Li, P.; Zhang, S. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery. Sensors 2018, 18, 3717. [Google Scholar] [CrossRef] [PubMed]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Guo, J.; Li, Q.; Xie, H.; Li, J.; Qiao, L.; Zhang, C.; Yang, G.; Wang, F. Monitoring of Vegetation Disturbance and Restoration at the Dumping Sites of the Baorixile Open-Pit Mine Based on the LandTrendr Algorithm. Int. J. Environ. Res. Public Health 2022, 19, 9066. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M.; Liu, J.; Wang, H.; Chen, B. Vegetation Disturbance and Recovery Dynamics of Different Surface Mining Sites via the LandTrendr Algorithm: Case Study in Inner Mongolia, China. Land 2022, 11, 856. [Google Scholar] [CrossRef]
- Lothspeich, A.C.; Knight, J.F. The Applicability of LandTrendr to Surface Water Dynamics: A Case Study of Minnesota from 1984 to 2019 Using Google Earth Engine. Remote Sens. 2022, 14, 2662. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sens. 2020, 12, 2883. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Wei, Y. Has the Construction of National High-Tech Zones Promoted Regional Economic Growth?—Empirical Research from Prefecture-Level Cities in China. Sustainability 2022, 14, 6349. [Google Scholar] [CrossRef]
- Phatudi, L.; Okoro, C. An Exploration of Macro-Economic Determinants of Real Estate Booms and Declines in Developing Countries. J. Hous. Built Environ. 2023, 38, 261–282. [Google Scholar] [CrossRef]
- Xu, X.; Li, B.; Liu, X.; Li, X.; Shi, Q. Mapping Annual Global Land Cover Changes at a 30 m Resolution from 2000 to 2015. Natl. Remote Sens. Bull. 2021, 25, 1896–1916. [Google Scholar]
Parameter | Description | Value |
---|---|---|
Max Segments | Maximum number of segments fitted on the time series | 6 |
Spike Threshold | Threshold to suppress spikes (1.0 indicates no suppression) | 0.75 |
Vertex Count Overshoot | The number of vertices in the initial model can exceed “Max Segments + 1” by an additional amount specified by “Vertex Count Overshoot” | 6 |
Prevent One-Year Recovery | Whether it prevents cropland from returning to its original state after one year of change | true |
Recovery Threshold | Limits the slope of the segment to less than 1/Recovery Threshold | 0.5 |
p-Value Threshold | Maximum p-value for the best model | 0.1 |
Best Model Proportion | The maximum allowable difference in p-values between the model with the most vertices and the model with the fewest vertices | 0.75 |
Min Observations Needed | The minimum number of observations in the time series | 6 |
Classification | PRD | NG | EG | WG | Total |
---|---|---|---|---|---|
Cropland | 50 | 50 | 18 | 42 | 160 |
Non-cropland | 146 | 230 | 38 | 74 | 480 |
Total | 196 | 280 | 56 | 116 | 648 |
Subregions | Mapping Results | Reference Results | |||
---|---|---|---|---|---|
N-CL | CL | Total | UA | ||
PRD | N-CL | 140 | 9 | 149 | 0.94 |
CL | 6 | 41 | 47 | 0.87 | |
Total | 146 | 50 | 196 | Kappa = 0.78 | |
PA | 0.96 | 0.82 | OA = 0.92 | ||
NG | N-CL | 215 | 4 | 219 | 0.98 |
CL | 15 | 46 | 61 | 0.75 | |
Total | 230 | 50 | 280 | Kappa = 0.78 | |
PA | 0.93 | 0.92 | OA = 0.93 | ||
EG | N-CL | 36 | 1 | 37 | 0.97 |
CL | 2 | 17 | 19 | 0.89 | |
Total | 38 | 18 | 56 | Kappa = 0.88 | |
PA | 0.95 | 0.94 | OA = 0.95 | ||
WG | N-CL | 70 | 6 | 76 | 0.92 |
CL | 4 | 36 | 40 | 0.9 | |
Total | 74 | 42 | 116 | Kappa = 0.80 | |
PA | 0.95 | 0.86 | OA = 0.91 |
Year | OA | Kappa | UA | PA | ||
---|---|---|---|---|---|---|
CL | N-CL | CL | N-CL | |||
1995 | 0.91 | 0.83 | 0.8 | 0.94 | 0.79 | 0.94 |
2000 | 0.91 | 0.81 | 0.81 | 0.96 | 0.9 | 0.94 |
2005 | 0.93 | 0.83 | 0.84 | 0.96 | 0.92 | 0.94 |
2010 | 0.92 | 0.82 | 0.85 | 0.93 | 0.88 | 0.93 |
2015 | 0.93 | 0.80 | 0.84 | 0.96 | 0.86 | 0.95 |
2020 | 0.93 | 0.82 | 0.84 | 0.96 | 0.86 | 0.94 |
Dataset | OA | Kappa | UA | PA | ||
---|---|---|---|---|---|---|
CL | N-CL | CL | N-CL | |||
CLCD | 0.88 | 0.67 | 0.71 | 0.93 | 0.85 | 0.87 |
AGLC | 0.85 | 0.61 | 0.65 | 0.92 | 0.75 | 0.88 |
CNLUCC | 0.81 | 0.53 | 0.57 | 0.91 | 0.75 | 0.82 |
Our dataset | 0.93 | 0.80 | 0.84 | 0.96 | 0.86 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zhang, B.; Xu, H.; Qiao, Z.; Liu, L. Interannual Monitoring of Cropland in South China from 1991 to 2020 Based on the Combination of Deep Learning and the LandTrendr Algorithm. Remote Sens. 2024, 16, 949. https://doi.org/10.3390/rs16060949
Qu Y, Zhang B, Xu H, Qiao Z, Liu L. Interannual Monitoring of Cropland in South China from 1991 to 2020 Based on the Combination of Deep Learning and the LandTrendr Algorithm. Remote Sensing. 2024; 16(6):949. https://doi.org/10.3390/rs16060949
Chicago/Turabian StyleQu, Yue, Boyu Zhang, Han Xu, Zhi Qiao, and Luo Liu. 2024. "Interannual Monitoring of Cropland in South China from 1991 to 2020 Based on the Combination of Deep Learning and the LandTrendr Algorithm" Remote Sensing 16, no. 6: 949. https://doi.org/10.3390/rs16060949