Assessment of Combined Reflectance, Transmittance, and Absorbance Hyperspectral Sensors for Prediction of Chlorophyll a Fluorescence Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. OJIP Chlorophyll a Fluorescence Transient
2.3. Hyperspectral Optical Leaf Properties
2.4. Analysis of Leaf Spectral Fingerprints
2.5. Hyperspectral Vegetation Indices Using Optimal Wavelengths for JIP-Test Parameters
2.6. Partial Least Squares Regression (PLSR) by Analysis of Spectroscopy Data
2.7. Statistical Analyses
2.7.1. Descriptive, Univariate, and Multivariate Statistical Analyses
2.7.2. Principal Component Analysis (PCA)
3. Results
3.1. Description Statistical for Chlorophyll a Fluorescence
3.2. Chlorophyll a Fluorescence Kinetics
3.3. Hyperspectral Reflectance, Transmittance, and Absorbance Curves
3.4. Principal Component Analysis for Fluorescence, Reflectance, Transmittance, and Absorbance Sensors
3.5. Selection of Variables by PLS Algorithms for Hyperspectral Vegetation Index
3.6. Chlorophyll a Fluorescence Predicted Parameters
3.6.1. Calibration and Validation Models
3.6.2. Predicted
4. Discussion
4.1. Insights into Chlorophyll a Fluorescence Parameters
4.2. Hyperspectral and Principal Component Analysis by Reflectance, Transmittance, and Absorbance
4.3. Predictive Modeling-Based Reflectance, Transmittance, and Absorbance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falcioni, R.; Moriwaki, T.; Bonato, C.M.; de Souza, L.A.; Nanni, M.R.; Antunes, W.C. Distinct Growth Light and Gibberellin Regimes Alter Leaf Anatomy and Reveal Their Influence on Leaf Optical Properties. Environ. Exp. Bot. 2017, 140, 86–95. [Google Scholar] [CrossRef]
- Fankhauser, C.; Chory, J. Light Control of Plant Development. Annu. Rev. Cell Dev. Biol. 1997, 13, 203–229. [Google Scholar] [CrossRef] [PubMed]
- Kováč, D.; Veselovská, P.; Klem, K.; Večeřová, K.; Ač, A.; Peñuelas, J.; Urban, O. Potential of Photochemical Reflectance Index for Indicating Photochemistry and Light Use Efficiency in Leaves of European Beech and Norway Spruce Trees. Remote Sens. 2018, 10, 1202. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Lorenzini, G.; Nali, C.; Pellegrini, E.; Saponaro, V.; Hoshika, Y.; Arab, L.; Rennenberg, H.; Paoletti, E. Hyperspectral Reflectance of Light-Adapted Leaves Can Predict Both Dark- and Light-Adapted Chl Fluorescence Parameters, and the Effects of Chronic Ozone Exposure on Date Palm (Phoenix dactylifera). Int. J. Mol. Sci. 2020, 21, 6441. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Falcioni, R.; Moriwaki, T.; Antunes, W.C.; Nanni, M.R. Rapid Quantification Method for Yield, Calorimetric Energy and Chlorophyll a Fluorescence Parameters in Nicotiana tabacum L. Using Vis-NIR-SWIR Hyperspectroscopy. Plants 2022, 11, 2406. [Google Scholar] [CrossRef] [PubMed]
- Vilfan, N.; van der Tol, C.; Muller, O.; Rascher, U.; Verhoef, W. Fluspect-B: A Model for Leaf Fluorescence, Reflectance and Transmittance Spectra. Remote Sens. Environ. 2016, 186, 596–615. [Google Scholar] [CrossRef]
- Falcioni, R.; dos Santos, G.L.A.A.; Crusiol, L.G.T.; Antunes, W.C.; Chicati, M.L.; de Oliveira, R.B.; Demattê, J.A.M.; Nanni, M.R. Non-Invasive Assessment, Classification, and Prediction of Biophysical Parameters Using Reflectance Hyperspectroscopy. Plants 2023, 12, 2526. [Google Scholar] [CrossRef]
- Asner, G.P.; Jones, M.O.; Martin, R.E.; Knapp, D.E.; Hughes, R.F. Remote Sensing of Native and Invasive Species in Hawaiian Forests. Remote Sens. Environ. 2008, 112, 1912–1926. [Google Scholar] [CrossRef]
- Sobejano-Paz, V.; Mikkelsen, T.N.; Baum, A.; Mo, X.; Liu, S.; Köppl, C.J.; Johnson, M.S.; Gulyas, L.; García, M. Hyperspectral and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought. Remote Sens. 2020, 12, 3182. [Google Scholar] [CrossRef]
- Nalepa, J. Recent Advances in Multi and Hyperspectral Image Analysis. Sensors 2021, 21, 6002. [Google Scholar] [CrossRef] [PubMed]
- Kior, A.; Sukhov, V.; Sukhova, E. Application of Reflectance Indices for Remote Sensing of Plants and Revealing Actions of Stressors. Photonics 2021, 8, 582. [Google Scholar] [CrossRef]
- Falcioni, R.; Antunes, W.C.; Demattê, J.A.M.; Nanni, M.R. Biophysical, Biochemical, and Photochemical Analyses Using Reflectance Hyperspectroscopy and Chlorophyll a Fluorescence Kinetics in Variegated Leaves. Biology 2023, 12, 704. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Li, F.; Chen, X.; Li, Z.; Mulla, D.J. Nitrogen Balance Index Prediction of Winter Wheat by Canopy Hyperspectral Transformation and Machine Learning. Remote Sens. 2022, 14, 3504. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Sun, L.; Sun, Z.; Chen, R.; Wu, Y.; Ma, J.; Song, C. In-Season Monitoring of Maize Leaf Water Content Using Ground-Based and UAV-Based Hyperspectral Data. Sustainability 2022, 14, 9039. [Google Scholar] [CrossRef]
- Martinez-Nolasco, C.; Padilla-Medina, J.A.; Nolasco, J.J.M.; Guevara-Gonzalez, R.G.; Barranco-Gutiérrez, A.I.; Diaz-Carmona, J.J. Non-Invasive Monitoring of the Thermal and Morphometric Characteristics of Lettuce Grown in an Aeroponic System through Multispectral Image System. Appl. Sci. 2022, 12, 6540. [Google Scholar] [CrossRef]
- Kusaka, M.; Kalaji, H.M.; Mastalerczuk, G.; Dabrowski, P.; Kowalczyk, K. Potassium Deficiency Impact on the Photosynthetic Apparatus Efficiency of Radish. Photosynthetica 2021, 59, 127–136. [Google Scholar] [CrossRef]
- Mendes Bezerra, A.C.; da Cunha Valença, D.; da Gama Junqueira, N.E.; Moll Hüther, C.; Borella, J.; Ferreira de Pinho, C.; Alves Ferreira, M.; Oliveira Medici, L.; Ortiz-Silva, B.; Reinert, F. Potassium Supply Promotes the Mitigation of NaCl-Induced Effects on Leaf Photochemistry, Metabolism and Morphology of Setaria Viridis. Plant Physiol. Biochem. 2021, 160, 193–210. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Herppich, W.B. Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium Culmorum on the Photosynthetic Integrity of Infected Wheat Ears. Sensors 2011, 11, 3765–3779. [Google Scholar] [CrossRef]
- Jia, M.; Li, D.; Colombo, R.; Wang, Y.; Wang, X.; Cheng, T.; Zhu, Y.; Yao, X.; Xu, C.; Ouer, G.; et al. Quantifying Chlorophyll Fluorescence Parameters from Hyperspectral Reflectance at the Leaf Scale under Various Nitrogen Treatment Regimes in Winter Wheat. Remote Sens. 2019, 11, 2838. [Google Scholar] [CrossRef]
- Schansker, G.; Tóth, S.Z.; Strasser, R.J. Dark Recovery of the Chl a Fluorescence Transient (OJIP) after Light Adaptation: The QT-Component of Non-Photochemical Quenching Is Related to an Activated Photosystem I Acceptor Side. Biochim. Biophys. Acta-Bioenerg. 2006, 1757, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, W.; Wang, X.; Yang, L.; Han, S.; Chen, S.; Strasser, R.J.; Valverde, B.E.; Qiang, S. Comparative Phytotoxicity of Usnic Acid, Salicylic Acid, Cinnamic Acid and Benzoic Acid on Photosynthetic Apparatus of Chlamydomonas Reinhardtii. Plant Physiol. Biochem. 2018, 128, 1–12. [Google Scholar] [CrossRef]
- Strasser, R.J.; Michael, M.T. Analysis of the Fluorescence Transient Alaka Srivastava Summary II. The Theoretical Background. In Chlorophyll a Fluorescence 23; 2005. [Google Scholar]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. Probing Photosynth. Mech. Regul. Adapt. 2000, 25, 443–480. [Google Scholar]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2013; Volume 3, pp. 1–47. [Google Scholar]
- Fernandes, A.M.; Fortini, E.A.; Müller, L.A.d.C.; Batista, D.S.; Vieira, L.M.; Silva, P.O.; do Amaral, C.H.; Poethig, R.S.; Otoni, W.C. Leaf Development Stages and Ontogenetic Changes in Passionfruit (Passiflora Edulis Sims.) Are Detected by Narrowband Spectral Signal. J. Photochem. Photobiol. B Biol. 2020, 209, 111931. [Google Scholar] [CrossRef] [PubMed]
- Yoosefzadeh-Najafabadi, M.; Tulpan, D.; Eskandari, M. Using Hybrid Artificial Intelligence and Evolutionary Optimization Algorithms for Estimating Soybean Yield and Fresh Biomass Using Hyperspectral Vegetation Indices. Remote Sens. 2021, 13, 2555. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Sun, L.; Gonçalves, S.L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Assessing the Sensitive Spectral Bands for Soybean Water Status Monitoring and Soil Moisture Prediction Using Leaf-Based Hyperspectral Reflectance. Agric. Water Manag. 2023, 277, 108089. [Google Scholar] [CrossRef]
- Falcioni, R.; Moriwaki, T.; Gibin, M.S.; Vollmann, A.; Pattaro, M.C.; Giacomelli, M.E.; Sato, F.; Nanni, M.R.; Antunes, W.C. Classification and Prediction by Pigment Content in Lettuce (Lactuca sativa L.) Varieties Using Machine Learning and ATR-FTIR Spectroscopy. Plants 2022, 11, 3413. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2010; ISBN 0-13-100846-3. [Google Scholar]
- Falcioni, R.; Antunes, W.C.; Demattê, J.A.M.; Nanni, M.R. Reflectance Spectroscopy for the Classification and Prediction of Pigments in Agronomic Crops. Plants 2023, 12, 2347. [Google Scholar] [CrossRef]
- Cuchiara, C.C.; Silva, I.M.C.; Dalberto, D.S.; Bacarin, M.A.; Peters, J.A. Chlorophyll a Fluorescence in Sweet Potatoes under Different Copper Concentrations. J. Soil Sci. Plant Nutr. 2015, 15, 179–189. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Chicati, M.S.; Nanni, M.R.; Chicati, M.L.; Furlanetto, R.H.; Cezar, E.; De Oliveira, R.B. Hyperspectral Remote Detection as an Alternative to Correlate Data of Soil Constituents. Remote Sens. Appl. Soc. Environ. 2019, 16, 100270. [Google Scholar] [CrossRef]
- Gitelson, A.; Solovchenko, A.; Viña, A. Foliar Absorption Coefficient Derived from Reflectance Spectra: A Gauge of the Efficiency of in Situ Light-Capture by Different Pigment Groups. J. Plant Physiol. 2020, 254, 153277. [Google Scholar] [CrossRef] [PubMed]
- Boshkovski, B.; Doupis, G.; Zapolska, A.; Kalaitzidis, C.; Koubouris, G. Hyperspectral Imagery Detects Water Deficit and Salinity Effects on Photosynthesis and Antioxidant Enzyme Activity of Three Greek Olive Varieties. Sustainability 2022, 14, 1432. [Google Scholar] [CrossRef]
- Guo, T.; Tan, C.; Li, Q.; Cui, G.; Li, H. Estimating Leaf Chlorophyll Content in Tobacco Based on Various Canopy Hyperspectral Parameters. J. Ambient Intell. Humaniz. Comput. 2019, 10, 3239–3247. [Google Scholar] [CrossRef]
- Shurygin, B.; Chivkunova, O.; Solovchenko, O.; Solovchenko, A.; Dorokhov, A.; Smirnov, I.; Astashev, M.E.; Khort, D. Comparison of the Non-Invasive Monitoring of Fresh-Cut Lettuce Condition with Imaging Reflectance Hyperspectrometer and Imaging PAM-Fluorimeter. Photonics 2021, 8, 425. [Google Scholar] [CrossRef]
- Jin, J.; Huang, N.; Huang, Y.; Yan, Y.; Zhao, X.; Wu, M. Proximal Remote Sensing-Based Vegetation Indices for Monitoring Mango Tree Stem Sap Flux Density. Remote Sens. 2022, 14, 1483. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Martín-Herrero, J. Spectral Discrimination of Vegetation Classes in Ice-Free Areas of Antarctica. Remote Sens. 2016, 8, 856. [Google Scholar] [CrossRef]
- Feng, W.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Monitoring Leaf Pigment Status with Hyperspectral Remote Sensing in Wheat. Aust. J. Agric. Res. 2008, 59, 748–760. [Google Scholar] [CrossRef]
- Davis, P.A.; Caylor, S.; Whippo, C.W.; Hangarter, R.P. Changes in Leaf Optical Properties Associated with Light-Dependent Chloroplast Movements. Plant, Cell Environ. 2011, 34, 2047–2059. [Google Scholar] [CrossRef]
- Buschmann, C. Variability and Application of the Chlorophyll Fluorescence Emission Ratio Red/Far-Red of Leaves. Photosynth. Res. 2007, 92, 261–271. [Google Scholar] [CrossRef]
- Falcioni, R.; Antunes, W.C.; Demattê, J.A.M.; Nanni, M.R. A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach. Sensors 2023, 23, 3843. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, C.R.; Vogelmann, T.C. Do Epidermal Lens Cells Facilitate the Absorptance of Diffuse Light? Am. J. Bot. 2007, 94, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Falcioni, R.; Moriwaki, T.; Pattaro, M.; Herrig Furlanetto, R.; Nanni, M.R.; Camargos Antunes, W. High Resolution Leaf Spectral Signature as a Tool for Foliar Pigment Estimation Displaying Potential for Species Differentiation. J. Plant Physiol. 2020, 249, 153161. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.; Crusiol, L.G.T.; Nanni, M.R.; Caranhato, A.L.H.; Fuhrmann, M.B.; Nepomuceno, A.L.; Neumaier, N.; Farias, J.R.B.; Koltun, A.; Gonçalves, L.S.A.; et al. Vegetation Indices and NIR-SWIR Spectral Bands as a Phenotyping Tool for Water Status Determination in Soybean. Precis. Agric. 2021, 22, 249–266. [Google Scholar] [CrossRef]
- Bussotti, F.; Desotgiu, R.; Pollastrini, M.; Cascio, C. The JIP Test: A Tool to Screen the Capacity of Plant Adaptation to Climate Change. Scand. J. For. Res. 2010, 25, 43–50. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, H.; Liu, W.; Wang, X.; Guo, Y.; Strasser, R.J.; Qiang, S.; Chen, S.; Hu, Z. Action of Alamethicin in Photosystem II Probed by the Fast Chlorophyll Fluorescence Rise Kinetics and the JIP-Test. Photosynthetica 2020, 58, 358–368. [Google Scholar] [CrossRef]
- Castro, F.A.; Campostrini, E.; Netto, A.T.; Viana, L.H. Relationship between Photochemical Efficiency (JIP-Test Parameters) and Portable Chlorophyll Meter Readings in Papaya Plants. Braz. J. Plant Physiol. 2011, 23, 295–304. [Google Scholar] [CrossRef]
- Swoczyna, T.; Łata, B.; Stasiak, A.; Stefaniak, J.; Latocha, P. JIP-Test in Assessing Sensitivity to Nitrogen Deficiency in Two Cultivars of Actinidia Arguta (Siebold et Zucc.) Planch. Ex Miq. Photosynthetica 2019, 57, 646–658. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
Parameter | Count (n) | Mean | Median | Minimum | Maximum | CV (%) |
---|---|---|---|---|---|---|
Ψ(EO) | 200 | 0.57 | 0.57 | 0.46 | 0.64 | 6.11 |
Ψ(RO) | 200 | 0.17 | 0.17 | 0.14 | 0.22 | 7.22 |
ϕ(PO) | 200 | 0.76 | 0.76 | 0.71 | 0.82 | 3.50 |
ϕ(EO) | 200 | 0.44 | 0.43 | 0.33 | 0.51 | 9.38 |
ϕ(RO) | 200 | 0.13 | 0.13 | 0.11 | 0.18 | 8.05 |
ϕ(DO) | 200 | 0.24 | 0.24 | 0.18 | 0.29 | 11.21 |
δRo | 200 | 0.31 | 0.31 | 0.25 | 0.45 | 9.10 |
ρRo | 200 | 0.74 | 0.73 | 0.53 | 1.12 | 13.87 |
Kn | 200 | 0.005 | 0.005 | 0.005 | 0.006 | 5.62 |
Kp | 200 | 0.017 | 0.016 | 0.013 | 0.021 | 10.48 |
SFI(abs) | 200 | 1.31 | 1.23 | 0.78 | 1.87 | 24.17 |
PI(abs) | 200 | 13.76 | 11.61 | 5.03 | 26.44 | 41.75 |
D.F. | 200 | 2.53 | 2.45 | 1.62 | 3.28 | 17.13 |
Sensor | Parameter | Maximum Factor PLS | Calibration | Cross-Validation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | Offset | RMSE | RPD | R2 | Offset | RMSE | RPD | |||
Reflectance | Ψ(EO) | 4 | 0.77 | 0.13 | 0.02 | 1.58 | 0.75 | 0.14 | 0.02 | 1.51 |
Ψ(RO) | 10 | 0.22 | 0.13 | 0.01 | 1.03 | n/a | 0.16 | 0.02 | n/a | |
ϕ(PO) | 4 | 0.86 | 0.11 | 0.01 | 1.96 | 0.83 | 0.12 | 0.01 | 1.80 | |
ϕ(EO) | 4 | 0.81 | 0.08 | 0.02 | 1.69 | 0.77 | 0.09 | 0.02 | 1.57 | |
ϕ(RO) | 3 | 0.12 | 0.12 | 0.01 | 1.01 | 0.09 | 0.12 | 0.09 | 1.00 | |
ϕ(DO) | 4 | 0.85 | 0.04 | 0.01 | 1.87 | 0.82 | 0.04 | 0.01 | 1.74 | |
δRo | 7 | 0.54 | 0.14 | 0.02 | 1.19 | 0.42 | 0.16 | 0.02 | 1.10 | |
ρRo | 4 | 0.61 | 0.29 | 0.06 | 1.26 | 0.52 | 0.36 | 0.07 | 1.17 | |
Kn | 4 | 0.84 | 0.00 | 0.00 | 1.83 | 0.80 | 0.00 | 0.00 | 1.67 | |
Kp | 4 | 0.71 | 0.00 | 0.00 | 1.42 | 0.67 | 0.01 | 0.00 | 1.34 | |
SFI(abs) | 4 | 0.82 | 0.24 | 0.14 | 1.73 | 0.80 | 0.25 | 0.14 | 1.68 | |
PI(abs) | 5 | 0.85 | 2.05 | 2.24 | 1.92 | 0.81 | 2.47 | 2.58 | 1.69 | |
D.F. | 4 | 0.86 | 0.36 | 0.16 | 1.95 | 0.84 | 0.39 | 0.18 | 1.85 | |
Transmittance | Ψ(EO) | 6 | 0.72 | 0.16 | 0.02 | 1.44 | 0.68 | 0.17 | 0.02 | 1.36 |
Ψ(RO) | 1 | 0.01 | 0.17 | 0.01 | 1.00 | n/a | 0.18 | 0.01 | n/a | |
ϕ(PO) | 6 | 0.89 | 0.08 | 0.01 | 2.23 | 0.86 | 0.08 | 0.01 | 1.95 | |
ϕ(EO) | 6 | 0.86 | 0.06 | 0.01 | 1.97 | 0.82 | 0.07 | 0.02 | 1.76 | |
ϕ(RO) | 3 | 0.16 | 0.11 | 0.01 | 1.01 | 0.07 | 0.12 | 0.01 | 1.00 | |
ϕ(DO) | 6 | 0.88 | 0.03 | 0.01 | 2.10 | 0.84 | 0.03 | 0.01 | 1.84 | |
δRo | 5 | 0.48 | 0.16 | 0.02 | 1.14 | 0.38 | 0.17 | 0.02 | 1.08 | |
ρRo | 3 | 0.49 | 0.38 | 0.08 | 1.15 | 0.40 | 0.46 | 0.09 | 1.09 | |
Kn | 5 | 0.85 | 0.00 | 0.00 | 1.90 | 0.83 | 0.00 | 0.00 | 1.79 | |
Kp | 3 | 0.70 | 0.01 | 0.00 | 1.39 | 0.69 | 0.01 | 0.00 | 1.38 | |
SFI(abs) | 6 | 0.89 | 0.14 | 0.11 | 2.20 | 0.85 | 0.19 | 0.13 | 1.92 | |
PI(abs) | 5 | 0.87 | 1.85 | 2.13 | 2.02 | 0.83 | 2.35 | 2.43 | 1.80 | |
D.F. | 6 | 0.86 | 0.35 | 0.16 | 1.98 | 0.84 | 0.40 | 0.18 | 1.82 | |
Absorbance | Ψ(EO) | 3 | 0.74 | 0.74 | 0.02 | 1.50 | 0.71 | 0.16 | 0.02 | 1.42 |
Ψ(RO) | 1 | 0.01 | 0.17 | 0.01 | 1.00 | n/a | 0.17 | 0.01 | n/a | |
ϕ(PO) | 3 | 0.85 | 0.11 | 0.01 | 1.92 | 0.84 | 0.12 | 0.01 | 1.83 | |
ϕ(EO) | 3 | 0.82 | 0.08 | 0.02 | 1.74 | 0.79 | 0.09 | 0.02 | 1.65 | |
ϕ(RO) | 2 | 0.11 | 0.12 | 0.01 | 1.01 | 0.08 | 0.12 | 0.01 | 1.00 | |
ϕ(DO) | 3 | 0.82 | 0.04 | 0.01 | 1.76 | 0.81 | 0.04 | 0.01 | 1.72 | |
δRo | 1 | 0.38 | 0.19 | 0.02 | 1.08 | 0.38 | 0.20 | 0.02 | 1.08 | |
ρRo | 3 | 0.49 | 0.38 | 0.08 | 1.15 | 0.39 | 0.47 | 0.09 | 1.09 | |
Kn | 6 | 0.85 | 0.00 | 0.00 | 1.91 | 0.81 | 0.00 | 0.00 | 1.71 | |
Kp | 3 | 0.70 | 0.00 | 0.00 | 1.40 | 0.66 | 0.01 | 0.00 | 1.34 | |
SFI(abs) | 3 | 0.86 | 0.19 | 0.12 | 1.94 | 0.83 | 0.21 | 0.13 | 1.78 | |
PI(abs) | 3 | 0.79 | 2.86 | 2.65 | 1.65 | 0.79 | 2.92 | 2.73 | 1.61 | |
D.F. | 3 | 0.83 | 0.44 | 0.18 | 1.79 | 0.80 | 0.50 | 0.19 | 1.65 |
Sensor | Parameter | Maximum Factor PLS | Predicted | |||||
---|---|---|---|---|---|---|---|---|
R2 | Slope | Offset | SEP | RPD | Bias | |||
Reflectance | Ψ(EO) | 4 | 0.84 | 0.71 | 0.17 | 0.01 | 1.84 | 0.001 |
Ψ(RO) | 1 | −0.02 | −0.03 | 0.18 | 0.01 | 1.00 | 0.000 | |
ϕ(PO) | 4 | 0.85 | 0.80 | 0.15 | 0.01 | 1.90 | 0.004 | |
ϕ(EO) | 4 | 0.86 | 0.75 | 0.11 | 0.02 | 1.96 | 0.000 | |
ϕ(RO) | 3 | 0.22 | 0.29 | 0.09 | 0.01 | 1.02 | 0.002 | |
ϕ(DO) | 4 | 0.85 | 0.80 | 0.05 | 0.01 | 1.91 | 0.000 | |
δRo | 7 | 0.50 | 0.38 | 0.19 | 0.02 | 1.15 | 0.004 | |
ρRo | 4 | 0.71 | 0.94 | 0.06 | 0.05 | 1.42 | 0.015 | |
Kn | 4 | 0.82 | 0.75 | 0.00 | 0.00 | 1.76 | 0.000 | |
Kp | 4 | 0.77 | 0.82 | 0.00 | 0.00 | 1.55 | 0.000 | |
SFI(abs) | 4 | 0.90 | 0.78 | 0.27 | 0.10 | 2.32 | 0.003 | |
PI(abs) | 5 | 0.89 | 0.94 | 1.20 | 1.87 | 2.15 | 0.383 | |
D.F. | 4 | 0.88 | 0.80 | 0.51 | 0.15 | 2.10 | 0.004 | |
Transmittance | Ψ(EO) | 6 | 0.90 | 0.81 | 0.11 | 0.01 | 2.27 | 0.001 |
Ψ(RO) | 1 | −0.03 | −0.02 | 0.18 | 0.01 | 1.00 | 0.001 | |
ϕ(PO) | 6 | 0.92 | 0.83 | 0.13 | 0.01 | 2.49 | 0.000 | |
ϕ(EO) | 6 | 0.91 | 0.84 | 0.01 | 0.12 | 2.47 | 0.003 | |
ϕ(RO) | 3 | 0.22 | 0.37 | 0.09 | 0.01 | 1.03 | 0.002 | |
ϕ(DO) | 6 | 0.93 | 0.81 | 0.05 | 0.01 | 2.68 | 0.000 | |
δRo | 5 | 0.49 | 0.27 | 0.23 | 0.02 | 1.14 | 0.008 | |
ρRo | 3 | 0.74 | 0.75 | 0.19 | 0.04 | 1.50 | 0.014 | |
Kn | 5 | 0.83 | 0.66 | 0.00 | 0.00 | 1.77 | 0.000 | |
Kp | 3 | 0.79 | 0.73 | 0.00 | 0.00 | 1.63 | 0.000 | |
SFI(abs) | 6 | 0.95 | 0.87 | 0.17 | 0.07 | 3.32 | 0.003 | |
PI(abs) | 5 | 0.92 | 0.87 | 1.83 | 1.57 | 2.56 | 0.051 | |
D.F. | 6 | 0.95 | 0.85 | 0.38 | 0.11 | 3.21 | 0.000 | |
Absorbance | Ψ(EO) | 3 | 0.86 | 0.66 | 0.2 | 0.0 | 1.95 | 0.0 |
Ψ(RO) | 1 | 0.03 | 0.00 | 0.2 | 0.0 | 1.00 | 0.0 | |
ϕ(PO) | 3 | 0.86 | 0.75 | 0.2 | 0.0 | 1.95 | 0.0 | |
ϕ(EO) | 3 | 0.88 | 0.71 | 0.1 | 0.0 | 2.08 | 0.0 | |
ϕ(RO) | 2 | 0.23 | 0.27 | 0.1 | 0.0 | 1.03 | 0.0 | |
ϕ(DO) | 3 | 0.87 | 0.72 | 0.1 | 0.0 | 2.02 | 0.0 | |
δRo | 1 | 0.48 | 0.30 | 0.2 | 0.0 | 1.14 | 0.0 | |
ρRo | 3 | 0.74 | 0.79 | 0.2 | 0.0 | 1.49 | 0.0 | |
Kn | 6 | 0.80 | 0.70 | 0.0 | 0.0 | 1.66 | 0.0 | |
Kp | 3 | 0.78 | 0.74 | 0.0 | 0.0 | 1.60 | 0.0 | |
SFI(abs) | 3 | 0.91 | 0.78 | 0.3 | 0.1 | 2.45 | 0.0 | |
PI(abs) | 3 | 0.91 | 0.76 | 3.2 | 1.5 | 2.41 | 0.0 | |
D.F. | 3 | 0.90 | 0.73 | 0.7 | 0.2 | 2.29 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcioni, R.; Antunes, W.C.; Oliveira, R.B.d.; Chicati, M.L.; Demattê, J.A.M.; Nanni, M.R. Assessment of Combined Reflectance, Transmittance, and Absorbance Hyperspectral Sensors for Prediction of Chlorophyll a Fluorescence Parameters. Remote Sens. 2023, 15, 5067. https://doi.org/10.3390/rs15205067
Falcioni R, Antunes WC, Oliveira RBd, Chicati ML, Demattê JAM, Nanni MR. Assessment of Combined Reflectance, Transmittance, and Absorbance Hyperspectral Sensors for Prediction of Chlorophyll a Fluorescence Parameters. Remote Sensing. 2023; 15(20):5067. https://doi.org/10.3390/rs15205067
Chicago/Turabian StyleFalcioni, Renan, Werner Camargos Antunes, Roney Berti de Oliveira, Marcelo Luiz Chicati, José Alexandre M. Demattê, and Marcos Rafael Nanni. 2023. "Assessment of Combined Reflectance, Transmittance, and Absorbance Hyperspectral Sensors for Prediction of Chlorophyll a Fluorescence Parameters" Remote Sensing 15, no. 20: 5067. https://doi.org/10.3390/rs15205067