Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Galician HFR System
- (i)
- Hourly radial currents, moving toward or away from the site, that are representative of the upper 2 m of the water column. The maximum current speed, horizontal range and angular resolution are 100 cm·s−1, 200 km and 5°, respectively. All of those radial current vectors (from two or several sites) within a predefined search radius of 25 km are geometrically combined by applying an unweighted least squares fitting algorithm [35] to estimate hourly total current vectors on a Cartesian regular mesh of 6 × 6 km horizontal resolution.
- (ii)
- Thirty-minute wave estimations for five range cells, regularly spaced every 5.1 km, which extend radially from the site. For further details about this dataset, the reader is referred to Reference [22], as the present work is mainly focused on surface circulation.
2.2. In Situ Buoys
2.3. Upwelling Indexes
2.4. CTD Device
2.5. Satellite-Derived Products
2.6. IBI Ocean Forecast System
2.7. Methods
3. Results
3.1. Skill Assessment of HFR Estimations
3.2. Skill of IBI to Reproduce Two Upwelling/Downwelling Events
3.2.1. Selection of Upwelling and Downwelling Events
3.2.2. Analysis of the Surface Circulation
3.2.3. Wind Forcing
3.2.4. Sea Surface Temperature Analysis
3.2.5. Vertical Analysis
3.3. New HFR-Derived Upwelling Index: UIHFR
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Botsford, L.W.; Lawrence, C.A.; Dever, E.P.; Hastings, A.; Largier, J. Effects of variable winds on biological productivity on continental shelves in coastal upwelling systems. Deep-Sea Res. Part II 2006, 53, 3116–3140. [Google Scholar] [CrossRef]
- Lachkar, Z.; Gruber, N. What controls biological production in coastal upwelling systems? Insights from a comparative modelling study. Biogeosciences 2011, 8, 2961–2976. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.E.; Hickey, B.M.; Shillington, F.A.; Strub, P.T.; Brink, K.H.; Barton, E.D.; Thomas, A.C. Eastern ocean boundaries coastal segment (E). In The Global Coastal Ocean, Regional Studies and Syntheses, The Sea; Robinson, A.R., Brink, K.H., Eds.; John Wiley and Sons, Inc.: New York, NY, USA, 1998; Volume 11, pp. 29–67. [Google Scholar]
- Largier, J.L.; Magnell, B.A.; Winant, C.D. Subtidal circulation over the northern California shelf. J. Geophys. Res. 1993, 98, 18147–18179. [Google Scholar] [CrossRef]
- Bjorkstedt, E.; Roughgarden, J. Larval transport and coastal upwelling: An application of HF radar in ecological research. Oceanography 1997, 10, 64–67. [Google Scholar] [CrossRef]
- Pitcher, G.C.; Figueiras, F.G.; Hickey, B.M.; Moita, M.T. The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog. Oceanogr. 2010, 85, 5–32. [Google Scholar] [CrossRef] [Green Version]
- deCastro, M.; Gómez-Gesteira, M.; Álvarez, I.; Lorenzo, M.; Cabanas, J.M.; Prego, R.; Crespo, A.J.C. Characterization of fall-winter upwelling recurrence along the Galician western coast (NW Spain) from 2000 to 2005: Dependence on atmospheric forcing. J. Mar. Syst. 2008, 72, 145–158. [Google Scholar] [CrossRef]
- Torres, R.; Barton, E.D. Onset and development of the Iberian poleward flow along the Galician coast. Cont. Shelf Res. 2006, 26, 1134–1153. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, I.; Gómez-Gesteira, M.; deCastro, M.; Prego, R. Variation in upwelling intensity along the North-West Iberian Peninsula (Galicia). J. Atmos. Ocean Sci. 2005, 10, 309–324. [Google Scholar] [CrossRef]
- Torres, R.; Barton, E.D.; Miller, P.; Álvarez-Fanjul, E. Spatial patterns of wind and sea surface temperature in the Galician upwelling region. J. Geophys. Res. 2003, 108, 3130. [Google Scholar] [CrossRef] [Green Version]
- Prego, R.; Bao, R. Upwelling influence on the Galician coast: Silicate in shelf water and underlying surface sediments. Cont. Shelf Res. 1997, 17, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, I.; Gómez-Gesteira, M.; deCastro, M.; Lorenzo, M.N.; Crespo, A.J.C.; Dias, J.M. Comparative analysis of upwelling influence between the western and northern coast of the Iberian Peninsula. Cont. Shelf Res. 2011, 31, 388–399. [Google Scholar] [CrossRef]
- Gómez-Gesteira, M.; Moreira, C.; Álvarez, I.; deCastro, M. Ekman transport along the Galician coast (northwest Spain) calculated from forecasted winds. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Picado, A.; Álvarez, I.; Vaz, N.; Dias, J.M. Chlorophyll concentration along the north-western coast if the Iberian Peninsula vs. atmosphere-ocean-land conditions. J. Coast. Res. 2013, 65, 2047–2052. [Google Scholar] [CrossRef]
- González-Nuevo, G.; Gago, J.; Cabanas, J.M. Upwelling Index: A powerful tool for marine research in the NW Iberian upwelling system. J. Oper. Oceanogr. 2014, 7, 47–57. [Google Scholar] [CrossRef]
- Souto, C.; Gilcoto, M.; Fariña-Busto, L.; Pérez, F.F. Modeling the residual circulation of a coastal embayment affected by wind-driven upwelling: Circulation of the Ría de Vigo (NW Spain). J. Geophys. Res. 2003, 108, 3340. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.D.; Largier, J.L.; Torres, R.; Sheridan, M.; Trasviña, A.; Souza, A.; Pazos, Y.; Valle-Levinson, A. Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo. Prog. Oceanogr. 2015, 134, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.D.; Torres, R.; Figueiras, F.G.; Gilcoto, M.; Largier, J. Surface water subduction during a downwelling event in a semi-enclosed bay. J. Geophys. Res. Oceans 2016, 121, 7088–7107. [Google Scholar] [CrossRef] [Green Version]
- Gilcoto, M.; Largier, J.L.; Barton, E.D.; Piedracoba, S.; Torres, R.; Graña, R.; Alonso-Perez, F.; Villacieros-Robineau, N.; De la Granda, F. Rapid response to coastal upwelling in a semienclosed bay. Geophys. Res. Lett. 2017, 44. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Piedracoba, S.; Álvarez-Fanjul, E. Validation of high-frequency radar ocean surface current observations in the NW of the Iberian Peninsula. Cont. Shelf Res. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Lorente, P.; Sotillo, M.G.; Aouf, L.; Amo-Baladrón, A.; Barrera, E.; Dalphinet, A.; Toledano, C.; Rainaud, R.; De Alfonso, M.; Piedracoba, S.; et al. Extreme Wave Height Events in NW Spain: A Combined Multi-Sensor and Model Approach. Remote Sens. 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Basañez Mercader, A.; Piedracoba, S.; Pérez-Muñuzuri, V.; Montero, P.; Sotillo, M.G.; Álvarez-Fanjul, E. Long-term skill assessment of SeaSonde radar-derived wave parameters in the Galician coast (NW Spain). Int. J. Remote Sens. 2019, 40. [Google Scholar] [CrossRef]
- Shkedy, Y.; Fernandez, D.; Teague, C.; Vesecky, J.; Roughgarden, J. Detecting upwelling along the central coast of California during an El Niño year using HF radar. Cont. Shelf Res. 1995, 15, 803–814. [Google Scholar] [CrossRef]
- Shulman, I.; Anderson, S.; Rowley, C.; DeRada, S.; Doyle, J.; Ramp, S. Comparisons of upwelling and relaxation events in the Monterrey Bay area. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Ramp, S.R.; Paduan, J.D.; Shulman, I.; Kindle, J.; Bahr, F.L.; Chavez, F. Observations of upwelling and relation events in the northern Monterrey Bay during August 2000. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Roughan, M.; Terril, E.J.; Largier, J.L.; Otero, M. Observations of divergence and upwelling around Point Loma, California. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.M.; Largier, J.L. HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Res. II 2006, 53, 2906–2930. [Google Scholar] [CrossRef]
- Enriquez, A. An Investigation of Surface Current Patterns Related to Upwelling in Monterrey Bay, Using High Frequency Radar. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2004. [Google Scholar]
- Paduan, J.D.; Cook, M.S.; Tapia, V.M. Patters of upwelling and relaxation around Monterrey Bay based on long-term observations of surface currents from High Frequency radar. Deep-Sea Res. II 2018, 151, 129–136. [Google Scholar] [CrossRef]
- Rubio, A.; Mader, J.; Corgnati, L.; Mantovani, C.; Griffa, A.; Novellino, A.; Quentin, C.; Wyatt, L.; Schulz-Stellenfleth, J.; Horstmann, J.; et al. HF Radar Activity in European Coastal Seas: Next Steps Towards a Pan-European HF Radar Network. Front. Mar. Sci. 2017, 20. [Google Scholar] [CrossRef] [Green Version]
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Fanjul, E.A.; Terrill, E.; Otero, M.; et al. The Global High Frequency Radar network. Front. Mar. Sci. 2019, 14. [Google Scholar] [CrossRef]
- De Mey-Frémaux, P.; Ayoub, N.; Barth, A.; Brewin, R.; Charria, G.; Campuzano, F.J.; Ciavatta, S.; Cirano, M.; Edwards, C.; Federico, I.; et al. Model-Observations synergy in the coastal ocean. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Davidson, F.; Alvera-Azcárate, A.; Barth, A.; Brassington, G.B.; Chassignet, E.P.; Clementi, E.; De Mey-Frémaux, P.; Divakaran, P.; Harris, C.; Hernandez, F.; et al. Synergies in Operational Oceanography: The intrinsic need for sustained ocean observations. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Le Traon, P.Y.; Ali, A.; Álvarez-Fanjul, E.; Aouf, L.; Axell, L.; Aznar, R.; Ballarotta, M.; Behrens, A.; Mounir, B.; Bentamy, A.; et al. The Copernicus Marine Environmental Monitoring Service: Main Scientific Achievements and Future Prospects. Mercator Ocean J. 2017, 56, 1–101. [Google Scholar]
- Barrick, D.E.; Lipa, B.J. Correcting for distorted antenna patterns in CODAR ocean surface measurements. IEEE J. Oceanic Eng. 1986, 11, 304–309. [Google Scholar] [CrossRef]
- Barrick, D. Geometrical Dilution of Statistical Accuracy (GDOSA) in Multi-Static HF Radar Networks; CODAR Ocean Sensors Ltd.: Mountain View, CA, USA, 2006. [Google Scholar]
- Madec, G. NEMO Ocean General Circulation Model, Reference Manual, Internal Report; LODYC/IPSL: Paris, France, 2008. [Google Scholar]
- Sotillo, M.G.; Cailleau, S.; Lorente, P.; Levier, B.; Aznar, R.; Reffray, G.; Amo-Baladrón, A.; Álvarez-Fanjul, E. The MyOcean IBI Ocean Forecast and Reanalysis Systems: Operational products and roadmap to the future Copernicus Service. J. Oper. Oceanogr. 2015, 8, 1–18. [Google Scholar] [CrossRef]
- Kundu, P. Ekman veering observed near the ocean bottom. J. Phys. Oceanogr. 1976, 6, 238–242. [Google Scholar] [CrossRef]
- Futch, V. The Lagrangian Properties of the Flow West of Oahu. Master’s Thesis, University of Hawaii, Honolulu, HI, USA, 2009. [Google Scholar]
- Archer, M.R.; Shay, L.K.; Jaimes, B.; Martinez-Pedraja, J. Observing frontal instabilities of the Florida current using high frequency radar. In Coastal Ocean Observing Systems; Liu, Y., Kerkering, H., Weisberg, R.H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Chapter 11; pp. 179–208. [Google Scholar] [CrossRef]
- Schaeffer, A.; Gramoulle, A.; Roughan, M.; Mantovanelli, A. Characterizing frontal eddies along the East Australian Current from HF radar observations. J. Geophys. Res. Oceans 2017, 122, 3964–3980. [Google Scholar] [CrossRef]
- Jacox, M.G.; Edwards, C.A.; Hazen, E.L.; Bograd, S.J. Coastal upwelling revisited: Ekman, Bakun and improved upwelling indexes for the US West Coast. J. Geophys. Res. Oceans 2018, 123, 7332–7350. [Google Scholar] [CrossRef]
- Cosoli, S.; Mazzoldi, A.; Gacic, M. Validation of surface current measurements in the Northern Adriatic Sea from High Frequency radars. J. Atmos. Ocean. Technol. 2010, 27, 908–919. [Google Scholar] [CrossRef]
- Robinson, A.M.; Wyatt, L.R.; Howarth, M.J. A two-year comparison between HF radar and ADCP current measurements in Liverpool Bay. J. Oper. Oceanogr. 2011, 4, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Rypina, I.I.; Kirincich, A.R.; Limeburner, R.; Udovydchenkov, I.A. Eulerian and lagrangian correspondence of High-Frequency radar and surface drifter data: Effects of radar resolution and flow components. J. Atmos. Ocean. Technol. 2014, 31, 945–966. [Google Scholar] [CrossRef] [Green Version]
- Kohut, J.T.; Glenn, S.M. Improving HF radar surface current measurements with measured antenna beam patterns. J. Atmos. Ocean. Technol. 2003, 20, 1303–1316. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography; Elsevier Science: Amsterdam, The Netherlands, 2001; p. 654. ISBN 9780080477008. [Google Scholar]
- Alfonso, M.; Álvarez-Fanjul, E.; López, J.D. Comparison of CODAR SeaSonde HF Radar Operational Waves and Currents Measurements with Puertos del Estado Buoys; Final Internal Report of Puertos del Estado: Madrid, Spain, 2006; pp. 1–32. [Google Scholar]
- Rubio, A.; Reverdin, G.; Fontán, A.; González, M.; Mader, J. Mapping near-inertial variability in the SE Bay of Biscay from HF radar data and two offshore moored buoys. Geophys. Res. Lett. 2011, 38, L19607. [Google Scholar] [CrossRef]
- Solabarrieta, L.; Rubio, A.; Castanedo, S.; Medina, R.; Charria, G.; Hernández, C. Surface water circulation patterns in the southeastern Bay of Biscay: New evidences from HF radar data. Cont. Shelf Res. 2014, 74, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Álvarez-Fanjul, E. Accuracy assessment of high frequency radar current measurements in the Strait of Gibraltar. J. Oper. Oceanogr. 2014, 7, 59–73. [Google Scholar] [CrossRef]
- Lana, A.; Marmain, J.; Fernández, V.; Tintoré, J.; Orfilia, A. Wind influence on surface current variability in the Ibiza Channel from HF Radar. Ocean Dyn. 2016, 66, 483–497. [Google Scholar] [CrossRef]
- Mihanović, H.; Cosoli, S.; Vilibić, I.; Ivanković, D.; Dadić, V.; Gačić, M. Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Gačić, M.; Kovačević, V.; Cosoli, S.; Mazzoldi, A.; Paduan, J.D.; Mancero-Mosquera, I.; Yari, S. Surface current patterns in front of the Venice Lagoon. Estuar. Coast. Shelf Sci. 2009, 82, 485–494. [Google Scholar] [CrossRef]
- McClain, C.R.; Chao, S.Y.; Atkinson, L.P.; Blanton, J.O.; Decastillejo, F. Wind-Driven Upwelling in the Vicinity of Cape Finisterre, Spain. J. Geophys. Res.-Ocean. 1986, 91, 8470–8486. [Google Scholar] [CrossRef] [Green Version]
- Teles-Machado, A.; Peliz, A.; McWilliams, J.C.; Cardoso, R.M.; Soares, P.M.M.; Miranda, P.M.A. On the year-to-year changes of the Iberian Poleward Current. J. Geophys. Res. Oceans 2015, 120. [Google Scholar] [CrossRef]
- Otero, P.; Ruiz-Villareal, M.; Peliz, A. Variability of river plumes off Northwest Iberia in response to wind events. J. Mar. Syst. 2008, 72, 238–255. [Google Scholar] [CrossRef]
- O’Donncha, F.; Hartnett, M.; Nash, S.; Ren, L.; Ragnoli, E. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations. J. Mar. Syst. 2015, 142, 96–110. [Google Scholar] [CrossRef]
- Cosoli, S.; Licer, M.; Vodopivec, M.; Malacic, V. Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. J. Geophys. Res. Oceans 2013, 118, 6183–6200. [Google Scholar] [CrossRef]
- Aguiar, E.; Mourre, B.; Juza, M.; Reyes, M.; Hérnandez-Lasheras, J.; Cutolo, E.; Mason, E.; Tintoré, J. Multi-platform model assessment in the Western Mediterranean Sea: Impact of downscaling on the surface circulation and mesoscale activity. Ocean Dyn. 2020, 70, 273–288. [Google Scholar] [CrossRef] [Green Version]
- Cosoli, S.; Gacic, M.; Mazzoldi, A. Surface current variability and wind influence in the north eastern Adriatic Sea as observed from high-frequency (HF) radar measurements. Cont. Shelf Res. 2012, 33, 1–13. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, C.Y.; Choi, B.J.; Kim, C.S. Surface Current Response to Wind and Plumes in a Bay-shape Estuary of the eastern Yellow Sea: Ocean Radar Observation. Ocean Sci. 2013, 48, 117–139. [Google Scholar] [CrossRef]
- Stegmann, P.M.; Ullman, D.S. Variability in Chlorophyll and Sea Surface Temperature Fronts in the Long Island Sound Outflow Region from Satellite Observations. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Kalhoro, M.A.; Morozov, E.; Tang, D.; Wang, S.; Thies, P.R. Increased chlorophyll-a concentration in the South China Sea caused by occasional sea surface temperature fronts at peripheries of eddies. Int. J. Remote Sens. 2017, 39, 4360–4375. [Google Scholar] [CrossRef]
- Venancio, A.; Montero, P.; Costa, P.; Regueiro, S.; Brands, S.; Taboada, J. An integrated Perspective of the Operational Forecasting System in Rías Baixas (Galicia, Spain) with Observational Data and End-Users. In Computational Science, ICCS 2019, Proceedings of the 9th International Conference, Faro, Portugal, 12–14 June 2019; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Ohlmann, C.; White, P.; Washburn, L.; Terril, E.; Emery, B.; Otero, M. Interpretation of coastal HF radar-derived currents with high-resolution drifter data. J. Atmos. Ocean. Technol. 2007, 24, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Kohut, J.; Roarty, H.J.; Glenn, S. Characterizing Observed Environmental variability with HF Doppler radar surface mappers and Acoustic Doppler Current Profilers: Environmental variability in the Coastal Ocean. J. Ocean. Eng. 2006, 31, 876–884. [Google Scholar] [CrossRef]
- Yu, P.; Kurapov, A.L.; Egbert, G.D.; Allen, J.S.; Kosro, M. Variational assimilation of HF radar currents in a coastal ocean model off Oregon. Ocean Model. 2012, 49–50, 86–104. [Google Scholar] [CrossRef]
- Oliveira, P.B.; Peliz, A.; Dubert, J.; Rosa, T.; Santos, A.M.P. Winter geostrophic currents and eddies in the western Iberia coastal transition zone. Deep Sea Res. I 2004, 51, 367–381. [Google Scholar] [CrossRef]
- Peliz, A.; Santos, A.M.P.; Oliveira, P.B.; Dubert, J. Extreme cross-shelf transport induced by eddy interactions southwest of Iberia in winter 2001. Geophys. Res. Lett. 2004, 31, L08301. [Google Scholar] [CrossRef]
- Lorente, P.; García-Sotillo, M.; Amo-Baladrón, A.; Aznar, R.; Levier, B.; Sánchez-Garrido, J.C.; Sammartino, S.; de Pascual-Collar, A.; Reffray, G.; Toledano, C.; et al. Skill assessment of global, regional, and coastal circulation forecast models: Evaluating the benefits of dynamical downscaling in IBI (Iberia–Biscay–Ireland) surface waters. Ocean Sci. 2019, 5, 967–996. [Google Scholar] [CrossRef] [Green Version]
- Huthnance, J.M.; Van Aken, H.M.; White, M.; Barton, E.D.; LeCann, B.; Coelho, E.F.; Álvarez-Fanjul, E.; Miller, P.; Vitorino, J. Ocean margin exchange-water flux estimates. J. Mar. Syst. 2002, 32, 107–137. [Google Scholar] [CrossRef]
- Herrera, J.L.; Piedracoba, S.; Varela, R.; Rosón, G. Spatial analysis of the wind field on the western coast of Galicia (NW Spain) from in situ measurements. Cont. Shelf Res. 2005, 25, 1728–1748. [Google Scholar] [CrossRef]
- Meneghesso, C.; Seabra, R.; Broitman, B.R.; Wethey, D.S.; Burrows, M.T.; Chan, B.K.K.; Guy-Haim, T.; Ribeiro, P.A.; Rilov, G.; Santos, A.M.; et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 2020, 237, 111588. [Google Scholar] [CrossRef]
- Brasseur, P.; Bahurel, P.; Bertino, L.; Birol, F.; Brankart, J.M.; Ferry, N.; Losa, S.; Remy, E.; Schröter, J.; Skachko, S.; et al. Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments. Q. J. R. Meteorol. Soc. 2005, 131, 3561–3582. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.; Álvarez, I.; Santos, F.; deCastro, M.; Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010? Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Barton, E.D.; Field, D.B.; Roy, C. Canary current upwelling: More or less? Prog. Oceanogr. 2013, 116, 167–178. [Google Scholar] [CrossRef] [Green Version]
- García-Reyes, M.; Largier, J. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. Oceans 2010, 115, C04011. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.C.; Ribeiro, A.; Des, M.; Gomez-Gesteira, M.; deCastro, M.; Dias, J.M. NW Iberian Peninsula coastal upwelling future weakening: Competition between wind intensification and surface heating. Sci. Total Environ. 2020, 703, 134808. [Google Scholar] [CrossRef] [PubMed]
Buoy | Name | Model | Deployment | Longitude | Latitude | Depth | Sampling |
---|---|---|---|---|---|---|---|
B1 | Silleiro | Seawatch | 1998 | 9.44°W | 42.12°N | 600 m | 1 h |
B2 | Vilano | Seawatch | 1998 | 9.22°W | 43.50°N | 386 m | 1 h |
Name | Variable | Type | Level | Resolution | Frequency | Provider |
---|---|---|---|---|---|---|
OSTIA | SST | L4 (gap-filled) | Surface | 0.05° | Daily | UK MetOffice |
CHLL4 | CHL | L4 (gap-filled) | Surface | 0.01° | Daily | Ocean Color TAC |
Reference | HFR (MHz) | Region | RMSE/Correlation |
---|---|---|---|
[49] | CODAR SeaSonde (4.86) | Galicia | 5–7 cm·s−1/0.68–0.88 |
[50] | CODAR SeaSonde (4.53) | Bay of Biscay | 8–13 cm·s−1/0.34–0.86 |
[51] | CODAR SeaSonde (4.53) | Bay of Biscay | 8–15 cm·s−1/0.27–0.67 |
[52] | CODAR SeaSonde (27) | Strait of Gibraltar | 8–22 cm·s−1/0.31–0.81 |
[53] | CODAR SeaSonde (13.5) | Ibiza Channel | 7–12 cm·s−1/0.59–0.72 |
[20] | CODAR SeaSonde (4.86) | Galicia | 8–13 cm·s−1/0.56–0.74 |
Skill Metric | UPW-Entire | UPW-Shelf | DOW-Entire | DOW-Shelf |
---|---|---|---|---|
Zonal RMSE (cm·s−1) | 11.00 | 9.59 | 11.77 | 10.48 |
Meridional RMSE (cm·s−1) | 10.94 | 8.26 | 12.68 | 11.87 |
Zonal correlation | 0.51 | 0.61 | 0.51 | 0.63 |
Meridional correlation | 0.44 | 0.58 | 0.42 | 0.61 |
CC | 0.50 | 0.63 | 0.50 | 0.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorente, P.; Piedracoba, S.; Montero, P.; Sotillo, M.G.; Ruiz, M.I.; Álvarez-Fanjul, E. Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach. Remote Sens. 2020, 12, 2762. https://doi.org/10.3390/rs12172762
Lorente P, Piedracoba S, Montero P, Sotillo MG, Ruiz MI, Álvarez-Fanjul E. Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach. Remote Sensing. 2020; 12(17):2762. https://doi.org/10.3390/rs12172762
Chicago/Turabian StyleLorente, Pablo, Silvia Piedracoba, Pedro Montero, Marcos G. Sotillo, María Isabel Ruiz, and Enrique Álvarez-Fanjul. 2020. "Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach" Remote Sensing 12, no. 17: 2762. https://doi.org/10.3390/rs12172762