Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Satellite Data
2.2. Bagging Classification Trees
2.3. Accuracy Assessment
2.4. Image Entropy
2.5. Design of the Experiments
2.5.1. Experimental Setting 1
2.5.2. Experimental Setting 2
2.5.3. Experimental Setting 3
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thenkabail, P.S. (Ed.) Remote Sensing Handbook. Volume I, Remotely Sensed Data Characterization, Classification, and Accuracies; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9781482217865. [Google Scholar]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef]
- Serra-Sagristà, J.; Aulí-Llinàs, F. Remote Sensing Data Compression. Comput. Intell. Remote Sens. 2008, 27–61. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very High-Resolution Remote Sensing: Challenges and Opportunities [Point of View]. Proc. IEEE 2012, 100, 1907–1910. [Google Scholar] [CrossRef]
- Tucker, C.J. Radiometric resolution for monitoring vegetation How many bits are needed? Int. J. Remote Sens. 1980, 1, 241–254. [Google Scholar] [CrossRef]
- Rao, N.; Garg, P.; Ghosh, S. The Effect of Radiometric Resolution on the Retrieval of Leaf Area Index from Agricultural Crops. GISci. Remote Sens. 2006, 43, 377–387. [Google Scholar] [CrossRef]
- Irons, J.R.; Markham, B.L.; Nelson, R.F.; Toll, D.L.; Williams, D.L.; Latty, R.S.; Stauffer, M.L. The effects of spatial resolution on the classification of Thematic Mapper data. Int. J. Remote Sens. 1985, 6, 1385–1403. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Marcus, A.; Lawrence, R.L. Effects of Sensor Resolution on Mapping In-Stream Habitats. Photogramm. Eng. Remote Sens. 2002, 68, 801–807. [Google Scholar]
- Platt, R.; Goetz, A. A comparison of AVIRIS and synthetic Landsat data for land use classification at the urban fringe. Photogramm. Eng. Remote Sens. 2004, 70, 813–819. [Google Scholar] [CrossRef]
- Singh, R.P.; Dadhwal, V.K.; Singh, K.P.; Navalgund, R.R. Study on sensor’s spatial, radiaometric and temporal resolution requirements for crop monitoring. In Proceedings of the Symposium on Advances in Electronics, ELECTRO-2001, Varanasi, India, 4–6 January 2001; pp. 4–6. [Google Scholar]
- Rama Rao, N.; Garg, P.K.; Ghosh, S.K. Evaluation of radiometric resolution on land use/land cover mapping in an agricultural area. Int. J. Remote Sens. 2007, 28, 443–450. [Google Scholar] [CrossRef]
- Bernstein, R.; Lotspiech, J.B.; Myers, H.J.; Kolsky, H.G.; Lees, R.D. Analysis and Processing of LANDSAT-4 Sensor Data Using Advanced Image Processing Techniques and Technologies. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 192–221. [Google Scholar] [CrossRef]
- Malila, W.A. Comparison of the Information Contents of Landsat TM and MSS Data. Photogramm. Eng. Remote Sens. 1985, 51, 1449–1457. [Google Scholar]
- Masek, J.G.; Honzak, M.; Goward, S.N.; Liu, P.; Pak, E. Landsat-7 ETM+ as an observatory for land cover initial radiometric and geometric comparisons with Landsat-5 Thematic Mapper. Remote Sens. Environ. 2001, 78, 118–130. [Google Scholar] [CrossRef]
- Karnieli, A.; Ben-Dor, E.; Bayarjargal, Y.; Lugasi, R. Radiometric saturation of Landsat-7 ETM+ data over the Negev Desert (Israel): Problems and solutions. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 219–237. [Google Scholar] [CrossRef]
- Alonso, C.; Tarquis, A.M.; Zúñiga, I.; Benito, R.M. Spatial and radiometric characterization of multi spectrum satellite images through multi-fractal analysis. Nonlinear Process. Geophys. 2017, 24, 141–155. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F. Precision and accuracy of EO-1 Advanced Land Imager (ALI) data for semiarid vegetation studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1311–1320. [Google Scholar] [CrossRef]
- Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2014, 40, 347–349. [Google Scholar] [CrossRef]
- Chen, D.; Stow, D.A.; Gong, P. Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. Int. J. Remote Sens. 2004, 25, 2177–2192. [Google Scholar] [CrossRef]
- Roth, K.L.; Roberts, D.A.; Dennison, P.E.; Peterson, S.H.; Alonzo, M. The impact of spatial resolution on the classification of plant species and functional types within imaging spectrometer data. Remote Sens. Environ. 2015, 171, 45–57. [Google Scholar] [CrossRef]
- Herold, M.; Gardner, M.E.; Roberts, D.A. Spectral resolution requirements for mapping urban areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1907–1919. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Vescovo, L.; Gianelle, D. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens. Environ. 2009, 113, 2345–2355. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. Analysis of Time-Series Spectral Index Data to Enhance Crop Identification Over a Mediterranean Rural Landscape. IEEE Geosci. Remote Sens. Lett. 2017, 1–5. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- Chrysafis, I.; Mallinis, G.; Gitas, I.; Tsakiri-Strati, M. Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method. Remote Sens. Environ. 2017, 199, 154–166. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Katiyar, S.; Arun, P. A Review Over the Applicability of Image Entropy in Analyses of Remote Sensing Datasets. arXiv. 2014. Available online: https://arxiv.org/ftp/arxiv/papers/1405/1405.6133.pdf (accessed on 11 August 2018).
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Hausser, J.; Strimmer, K. Entropy: Estimation of Entropy, Mutual Information and Related Quantities 2014. Available online: https://cran.r-project.org/web/packages/entropy/index.html (accessed on 11 August 2018).
- Franks, S. How Many Bits? Radiometric Resolution as a Factor in Obtaining Forestry Information with Remotely Sensed Measurements. Master’s Thesis, University of Maryland, College Park, MD, USA, 2006. [Google Scholar]
- Pope, A.; Rees, W.G. Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sens. Environ. 2014, 141, 1–13. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Chica-Olmo, M.; Abarca-Hernández, F. Computing geostatistical image texture for remotely sensed data classification. Comput. Geosci. 2000, 26, 373–383. [Google Scholar] [CrossRef]
- Sarp, G. Spectral and spatial quality analysis of pan-sharpening algorithms: A case study in Istanbul. Eur. J. Remote Sens. 2014, 47, 19–28. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Pu, R.; Zhang, Z. Mapping Robinia Pseudoacacia Forest Health Conditions by Using Combined Spectral, Spatial, and Textural Information Extracted from IKONOS Imagery and Random Forest Classifier. Remote Sens. 2015, 7, 9020–9044. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens. 2008, 63, 237–250. [Google Scholar] [CrossRef]
- Navulur, K. Radiometric Resolution. In Multispectral Image Analysis Using the Object-Oriented Paradigm; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; pp. 10–11. ISBN 9781420043068. [Google Scholar]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Zhang, T.; Su, J.; Liu, C.; Chen, W. Band Selection in Sentinel-2 Satellite for Agriculture Applications. In Proceedings of the 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 7–8. [Google Scholar]
- Aplin, P.; Atkinson, P.M.; Curran, P.J. Fine spatial resolution simulated satellite sensor imagery for land cover mapping in the United Kingdom. Remote Sens. Environ. 1999, 68, 206–216. [Google Scholar] [CrossRef]
Acquisition Year | Radiometric Resolution (bits) | Spatial Resolution (m) | OOB Error Rate (%) | Khat | Overall Accuracy (%) | Computational Time (s) |
---|---|---|---|---|---|---|
2007 | 11 | 1 | 6.33 | 0.82 | 91 | 94.74 |
2007 | 8 | 1 | 6.25 | 0.82 | 91 | 79.80 |
2007 | 11 | 3 | 6.25 | 0.78 | 89 | 62.15 |
2007 | 8 | 3 | 6.67 | 0.86 | 93 | 63.33 |
2007 | 11 | 5 | 6.33 | 0.75 | 88 | 61.96 |
2007 | 8 | 5 | 6.25 | 0.78 | 89 | 59.47 |
2010 | 11 | 1 | 8.00 | 0.72 | 86 | 93.46 |
2010 | 8 | 1 | 7.67 | 0.75 | 88 | 84.03 |
2010 | 11 | 3 | 5.50 | 0.75 | 88 | 61.83 |
2010 | 8 | 3 | 6.08 | 0.81 | 91 | 72.18 |
2010 | 11 | 5 | 8.17 | 0.78 | 89 | 61.09 |
2010 | 8 | 5 | 8.42 | 0.80 | 90 | 60.25 |
Radiometric Resolution (bits) | Spatial Resolution (m) | Khat | Overall Accuracy (%) |
---|---|---|---|
16 | 1 | 0.73 | 86 |
8 | 1 | 0.71 | 86 |
16 | 3 | 0.71 | 85 |
8 | 3 | 0.75 | 88 |
16 | 5 | 0.63 | 82 |
8 | 5 | 0.62 | 82 |
Dataset | Original Image Radiometry (bits) | Texture Radiometry (bits) | Window Size (p) | OOB Error Rate (%) | Khat | Overall Accuracy (%) | Computational Time (s) |
---|---|---|---|---|---|---|---|
Pansharpened MS | 11 | - | - | 34.43 | 0.62 | 68 | 344.19 |
Pansharpened MS | 8 | - | - | 35.67 | 0.61 | 67 | 340.27 |
Panchromatic | 11 | 16 | 5 | 46.57 | 0.52 | 60 | 537.1 |
Panchromatic | 11 | 8 | 5 | 26.93 | 0.59 | 66 | 467.26 |
Panchromatic | 8 | 16 | 5 | 45.6 | 0.51 | 59 | 552.36 |
Panchromatic | 8 | 8 | 5 | 47.97 | 0.44 | 54 | 510.27 |
Panchromatic | 11 | 16 | 15 | 27.3 | 0.62 | 68 | 502.01 |
Panchromatic | 11 | 8 | 15 | 29.27 | 0.59 | 66 | 476.69 |
Panchromatic | 8 | 16 | 15 | 26.53 | 0.63 | 69 | 497.73 |
Panchromatic | 8 | 8 | 15 | 29.47 | 0.58 | 65 | 469.38 |
Panchromatic | 11 | 16 | 25 | 18.63 | 0.66 | 71 | 478.99 |
Panchromatic | 11 | 8 | 25 | 19.53 | 0.63 | 69 | 460.47 |
Panchromatic | 8 | 16 | 25 | 19.03 | 0.66 | 72 | 482.86 |
Panchromatic | 8 | 8 | 25 | 20.17 | 0.63 | 69 | 460.79 |
Dataset | Original Image Radiometry (bits) | Spectral Indices Radiometry (bits) | OOB Error Rate (%) | Khat | Overall Accuracy (%) | Computational Time (s) |
---|---|---|---|---|---|---|
Original bands | 12 | - | 23.40 | 0.60 | 78 | 17964.47 |
Original bands | 8 | - | 23.84 | 0.60 | 77 | 17566.97 |
Spectral Indices | 12 | 16 | 24.39 | 0.59 | 77 | 11535.23 |
Spectral Indices | 12 | 8 | 23.95 | 0.58 | 78 | 11492.83 |
Spectral Indices | 8 | 16 | 24.72 | 0.59 | 78 | 12412.53 |
Spectral Indices | 8 | 8 | 25.28 | 0.58 | 77 | 12380.53 |
Dataset | Radiometric Resolution (bits) | Blue (B) | Green (G) | Red (R) | Red Edge (RE1) | Red Edge (RE2) | Near InfraRed Narrow 1 (NIRn1) | Near InfraRed (NIR) | Near InfraRed Narrow 2 (NIRn2) | ShortWave InfraRed (SWIR1) | ShortWave InfraRed (SWIR2) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ikonos-2007 | 11 | 19.88 | 19.87 | 19.84 | - | - | - | 19.86 | - | - | - |
Ikonos-2007 | 8 | 19.86 | 19.86 | 19.84 | - | - | - | 19.85 | - | - | - |
Difference (%) | 0.10 | 0.05 | 0.00 | 0.05 | |||||||
Ikonos-2010 | 11 | 19.83 | 19.81 | 19.75 | - | - | - | 19.83 | - | - | - |
Ikonos-2010 | 8 | 19.83 | 19.81 | 19.75 | - | - | - | 19.83 | - | - | - |
Difference (%) | 0.00 | 0.00 | 0.00 | 0.00 | |||||||
Quickbird | 11 | 23.55 | 23.55 | 23.52 | - | - | - | 23.52 | - | - | - |
Quickbird | 8 | 23.53 | 23.55 | 23.52 | - | - | - | 23.52 | - | - | - |
Difference (%) | 0.08 | 0.00 | 0.00 | 0.00 | |||||||
S2-March 2017 | 12 | 23.51 | 23.53 | 23.36 | 23.44 | 23.4 | 23.38 | 23.38 | 23.38 | 23.4 | 23.35 |
S2-March 2017 | 8 | 23.51 | 23.53 | 23.36 | 23.44 | 23.4 | 23.38 | 23.38 | 23.38 | 23.4 | 23.35 |
Difference (%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
S2-May 2017 | 12 | 23.51 | 23.56 | 23.47 | 23.55 | 23.47 | 23.45 | 23.43 | 23.43 | 23.37 | 23.33 |
S2-May 2017 | 8 | 23.51 | 23.56 | 23.47 | 23.55 | 23.47 | 23.45 | 23.43 | 23.43 | 23.37 | 23.33 |
Difference (%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
S2-June 2017 | 12 | 23.34 | 23.47 | 23.23 | 23.47 | 23.48 | 23.46 | 23.46 | 23.46 | 23.46 | 23.41 |
S2-June 2017 | 8 | 23.33 | 23.47 | 23.23 | 23.47 | 23.48 | 23.46 | 23.46 | 23.46 | 23.46 | 23.4 |
Difference (%) | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | |
S2-July 2017 | 12 | 23.28 | 23.44 | 23.12 | 23.45 | 23.46 | 23.43 | 23.43 | 23.43 | 23.47 | 23.39 |
S2-July 2017 | 8 | 23.27 | 23.44 | 23.12 | 23.45 | 23.46 | 23.43 | 23.43 | 23.43 | 23.47 | 23.39 |
Difference (%) | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
S2-August 2017 | 12 | 23.42 | 23.48 | 23.20 | 23.41 | 23.39 | 23.37 | 23.37 | 23.38 | 23.39 | 23.3 |
S2-August 2017 | 8 | 23.42 | 23.48 | 23.21 | 23.41 | 23.39 | 23.37 | 23.37 | 23.38 | 23.38 | 23.29 |
Difference (%) | 0.00 | 0.00 | −0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verde, N.; Mallinis, G.; Tsakiri-Strati, M.; Georgiadis, C.; Patias, P. Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy. Remote Sens. 2018, 10, 1267. https://doi.org/10.3390/rs10081267
Verde N, Mallinis G, Tsakiri-Strati M, Georgiadis C, Patias P. Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy. Remote Sensing. 2018; 10(8):1267. https://doi.org/10.3390/rs10081267
Chicago/Turabian StyleVerde, Natalia, Giorgos Mallinis, Maria Tsakiri-Strati, Charalampos Georgiadis, and Petros Patias. 2018. "Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy" Remote Sensing 10, no. 8: 1267. https://doi.org/10.3390/rs10081267
APA StyleVerde, N., Mallinis, G., Tsakiri-Strati, M., Georgiadis, C., & Patias, P. (2018). Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy. Remote Sensing, 10(8), 1267. https://doi.org/10.3390/rs10081267